7,147 research outputs found

    Learning a Partitioning Advisor with Deep Reinforcement Learning

    Full text link
    Commercial data analytics products such as Microsoft Azure SQL Data Warehouse or Amazon Redshift provide ready-to-use scale-out database solutions for OLAP-style workloads in the cloud. While the provisioning of a database cluster is usually fully automated by cloud providers, customers typically still have to make important design decisions which were traditionally made by the database administrator such as selecting the partitioning schemes. In this paper we introduce a learned partitioning advisor for analytical OLAP-style workloads based on Deep Reinforcement Learning (DRL). The main idea is that a DRL agent learns its decisions based on experience by monitoring the rewards for different workloads and partitioning schemes. We evaluate our learned partitioning advisor in an experimental evaluation with different databases schemata and workloads of varying complexity. In the evaluation, we show that our advisor is not only able to find partitionings that outperform existing approaches for automated partitioning design but that it also can easily adjust to different deployments. This is especially important in cloud setups where customers can easily migrate their cluster to a new set of (virtual) machines

    Loom: Query-aware Partitioning of Online Graphs

    Full text link
    As with general graph processing systems, partitioning data over a cluster of machines improves the scalability of graph database management systems. However, these systems will incur additional network cost during the execution of a query workload, due to inter-partition traversals. Workload-agnostic partitioning algorithms typically minimise the likelihood of any edge crossing partition boundaries. However, these partitioners are sub-optimal with respect to many workloads, especially queries, which may require more frequent traversal of specific subsets of inter-partition edges. Furthermore, they largely unsuited to operating incrementally on dynamic, growing graphs. We present a new graph partitioning algorithm, Loom, that operates on a stream of graph updates and continuously allocates the new vertices and edges to partitions, taking into account a query workload of graph pattern expressions along with their relative frequencies. First we capture the most common patterns of edge traversals which occur when executing queries. We then compare sub-graphs, which present themselves incrementally in the graph update stream, against these common patterns. Finally we attempt to allocate each match to single partitions, reducing the number of inter-partition edges within frequently traversed sub-graphs and improving average query performance. Loom is extensively evaluated over several large test graphs with realistic query workloads and various orderings of the graph updates. We demonstrate that, given a workload, our prototype produces partitionings of significantly better quality than existing streaming graph partitioning algorithms Fennel and LDG

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    Dynamic Physiological Partitioning on a Shared-nothing Database Cluster

    Full text link
    Traditional DBMS servers are usually over-provisioned for most of their daily workloads and, because they do not show good-enough energy proportionality, waste a lot of energy while underutilized. A cluster of small (wimpy) servers, where its size can be dynamically adjusted to the current workload, offers better energy characteristics for these workloads. Yet, data migration, necessary to balance utilization among the nodes, is a non-trivial and time-consuming task that may consume the energy saved. For this reason, a sophisticated and easy to adjust partitioning scheme fostering dynamic reorganization is needed. In this paper, we adapt a technique originally created for SMP systems, called physiological partitioning, to distribute data among nodes, that allows to easily repartition data without interrupting transactions. We dynamically partition DB tables based on the nodes' utilization and given energy constraints and compare our approach with physical partitioning and logical partitioning methods. To quantify possible energy saving and its conceivable drawback on query runtimes, we evaluate our implementation on an experimental cluster and compare the results w.r.t. performance and energy consumption. Depending on the workload, we can substantially save energy without sacrificing too much performance
    • …
    corecore