91,450 research outputs found

    Visual motion processing and human tracking behavior

    Full text link
    The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the object's image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking performance across time, a quick estimate of the object's global motion properties needs to be fed to the oculomotor system and dynamically updated. Concurrently, performance can be greatly improved in terms of latency and accuracy by taking into account predictive cues, especially under variable conditions of visibility and in presence of ambiguous retinal information. Here, we review several recent studies focusing on the integration of retinal and extra-retinal information for the control of human smooth pursuit.By dynamically probing the tracking performance with well established paradigms in the visual perception and oculomotor literature we provide the basis to test theoretical hypotheses within the framework of dynamic probabilistic inference. We will in particular present the applications of these results in light of state-of-the-art computer vision algorithms

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Motion processing deficits in migraine are related to contrast sensitivity

    Get PDF
    Background: There are conflicting reports concerning the ability of people with migraine to detect and discriminate visual motion. Previous studies used different displays and none adequately assessed other parameters that could affect performance, such as those that could indicate precortical dysfunction. Methods: Motion-direction detection, discrimination and relative motion thresholds were compared from participants with and without migraine. Potentially relevant visual covariates were included (contrast sensitivity; acuity; stereopsis; visual discomfort, stress, triggers; dyslexia). Results: For each task, migraine participants were less accurate than a control group and had impaired contrast sensitivity, greater visual discomfort, visual stress and visual triggers. Only contrast sensitivity correlated with performance on each motion task; it also mediated performance. Conclusions: Impaired performance on certain motion tasks can be attributed to impaired contrast sensitivity early in the visual system rather than a deficit in cortical motion processing per se. There were, however, additional differences for global and relative motion thresholds embedded in noise, suggesting changes in extrastriate cortex in migraine. Tasks to study the effects of noise on performance at different levels of the visual system and across modalities are recommended. A battery of standard visual tests should be included in any future work on the visual system and migraine

    When are abrupt onsets found efficiently in complex visual search? : evidence from multi-element asynchronous dynamic search

    Get PDF
    Previous work has found that search principles derived from simple visual search tasks do not necessarily apply to more complex search tasks. Using a Multielement Asynchronous Dynamic (MAD) visual search task, in which high numbers of stimuli could either be moving, stationary, and/or changing in luminance, Kunar and Watson (M. A Kunar & D. G. Watson, 2011, Visual search in a Multi-element Asynchronous Dynamic (MAD) world, Journal of Experimental Psychology: Human Perception and Performance, Vol 37, pp. 1017-1031) found that, unlike previous work, participants missed a higher number of targets with search for moving items worse than for static items and that there was no benefit for finding targets that showed a luminance onset. In the present research, we investigated why luminance onsets do not capture attention and whether luminance onsets can ever capture attention in MAD search. Experiment 1 investigated whether blinking stimuli, which abruptly offset for 100 ms before reonsetting-conditions known to produce attentional capture in simpler visual search tasks-captured attention in MAD search, and Experiments 2-5 investigated whether giving participants advance knowledge and preexposure to the blinking cues produced efficient search for blinking targets. Experiments 6-9 investigated whether unique luminance onsets, unique motion, or unique stationary items captured attention. The results found that luminance onsets captured attention in MAD search only when they were unique, consistent with a top-down unique feature hypothesis. (PsycINFO Database Record (c) 2013 APA, all rights reserved)

    The implications of embodiment for behavior and cognition: animal and robotic case studies

    Full text link
    In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5
    • …
    corecore