1,916 research outputs found

    Towards binocular active vision in a robot head system

    Get PDF
    This paper presents the first results of an investigation and pilot study into an active, binocular vision system that combines binocular vergence, object recognition and attention control in a unified framework. The prototype developed is capable of identifying, targeting, verging on and recognizing objects in a highly-cluttered scene without the need for calibration or other knowledge of the camera geometry. This is achieved by implementing all image analysis in a symbolic space without creating explicit pixel-space maps. The system structure is based on the ‘searchlight metaphor’ of biological systems. We present results of a first pilot investigation that yield a maximum vergence error of 6.4 pixels, while seven of nine known objects were recognized in a high-cluttered environment. Finally a “stepping stone” visual search strategy was demonstrated, taking a total of 40 saccades to find two known objects in the workspace, neither of which appeared simultaneously within the Field of View resulting from any individual saccade

    Intelligent manipulation technique for multi-branch robotic systems

    Get PDF
    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system

    A Robust Image Hashing Algorithm Resistant Against Geometrical Attacks

    Get PDF
    This paper proposes a robust image hashing method which is robust against common image processing attacks and geometric distortion attacks. In order to resist against geometric attacks, the log-polar mapping (LPM) and contourlet transform are employed to obtain the low frequency sub-band image. Then the sub-band image is divided into some non-overlapping blocks, and low and middle frequency coefficients are selected from each block after discrete cosine transform. The singular value decomposition (SVD) is applied in each block to obtain the first digit of the maximum singular value. Finally, the features are scrambled and quantized as the safe hash bits. Experimental results show that the algorithm is not only resistant against common image processing attacks and geometric distortion attacks, but also discriminative to content changes

    Visually guided vergence in a new stereo camera system

    Get PDF
    People move their eyes several times each second, to selectivelyanalyze visual information from specific locations. This is impor-tant, because analyzing the whole scene in foveal detail would re-quire a beachball-sized brain and thousands of additional caloriesper day. As artificial vision becomes more sophisticated, it mayface analogous constraints. Anticipating this, we previously devel-oped a robotic head with biologically realistic oculomotor capabil-ities. Here we present a system for accurately orienting the cam-eras toward a three-dimensional point. The robot’s cameras con-verge when looking at something nearby, so each camera shouldideally centre the same visual feature. At the end of a saccade,we combine priors with cross-correlation of the images from eachcamera to iteratively fine-tune their alignment, and we use the ori-entations to set focus distance. This system allows the robot toaccurately view a visual target with both eyes

    The implications of embodiment for behavior and cognition: animal and robotic case studies

    Full text link
    In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5

    The Complementary Brain: From Brain Dynamics To Conscious Experiences

    Full text link
    How do our brains so effectively achieve adaptive behavior in a changing world? Evidence is reviewed that brains are organized into parallel processing streams with complementary properties. Hierarchical interactions within each stream and parallel interactions between streams create coherent behavioral representations that overcome the complementary deficiencies of each stream and support unitary conscious experiences. This perspective suggests how brain design reflects the organization of the physical world with which brains interact, and suggests an alternative to the computer metaphor suggesting that brains are organized into independent modules. Examples from perception, learning, cognition, and action are described, and theoretical concepts and mechanisms by which complementarity is accomplished are summarized.Defense Advanced Research Projects and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-1-0657

    The Complementary Brain: A Unifying View of Brain Specialization and Modularity

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-I-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-I-0657
    • 

    corecore