760 research outputs found

    Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications

    Full text link
    [EN] The need for effective freight and human transportation systems has consistently increased during the last decades, mainly due to factors such as globalization, e-commerce activities, and mobility requirements. Traditionally, transportation systems have been designed with the main goal of reducing their monetary cost while offering a specified quality of service. During the last decade, however, sustainability concepts are also being considered as a critical component of transportation systems, i.e., the environmental and social impact of transportation activities have to be taken into account when managers and policy makers design and operate modern transportation systems, whether these refer to long-distance carriers or to metropolitan areas. This paper reviews the existing work on different scientific methodologies that are being used to promote Sustainable Transportation Systems (STS), including simulation, optimization, machine learning, and fuzzy sets. This paper discusses how each of these methodologies have been employed to design and efficiently operate STS. In addition, the paper also provides a classification of common challenges, best practices, future trends, and open research lines that might be useful for both researchers and practitioners.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T) and the SEPIE Erasmus+ Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Torre-Martínez, MRDL.; Corlu, CG.; Faulin, J.; Onggo, BS.; Juan-Pérez, ÁA. (2021). Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications. Sustainability. 13(3):1-21. https://doi.org/10.3390/su1303155112113

    A Review of Big Data in Road Freight Transport Modeling: Gaps and Potentials

    Get PDF
    Road transport accounted for 20% of global total greenhouse gas emissions in 2020, of which 30% come from road freight transport (RFT). Modeling the modern challenges in RFT requires the integration of different freight modeling improvements in, e.g., traffic, demand, and energy modeling. Recent developments in \u27Big Data\u27 (i.e., vast quantities of structured and unstructured data) can provide useful information such as individual behaviors and activities in addition to aggregated patterns using conventional datasets. This paper summarizes the state of the art in analyzing Big Data sources concerning RFT by identifying key challenges and the current knowledge gaps. Various challenges, including organizational, privacy, technical expertise, and legal challenges, hinder the access and utilization of Big Data for RFT applications. We note that the environment for sharing data is still in its infancy. Improving access and use of Big Data will require political support to ensure all involved parties that their data will be safe and contribute positively toward a common goal, such as a more sustainable economy. We identify promising areas for future opportunities and research, including data collection and preparation, data analytics and utilization, and applications to support decision-making

    A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification

    Get PDF
    The growth of environmental awareness and more robust enforcement of numerous regulations to reduce greenhouse gas (GHG) emissions have directed efforts towards addressing current environmental challenges. Considering the Vehicle Routing Problem (VRP), one of the effective strategies to control greenhouse gas emissions is to convert the fossil fuel-powered fleet into Environmentally Friendly Vehicles (EFVs). Given the multitude of constraints and assumptions defined for different types of VRPs, as well as assumptions and operational constraints specific to each type of EFV, many variants of environmentally friendly VRPs (EF-VRP) have been introduced. In this paper, studies conducted on the subject of EF-VRP are reviewed, considering all the road transport EFV types and problem variants, and classifying and discussing with a single holistic vision. The aim of this paper is twofold. First, it determines a classification of EF-VRP studies based on different types of EFVs, i.e., Alternative-Fuel Vehicles (AFVs), Electric Vehicles (EVs) and Hybrid Vehicles (HVs). Second, it presents a comprehensive survey by considering each variant of the classification, technical constraints and solution methods arising in the literature. The results of this paper show that studies on EF-VRP are relatively novel and there is still room for large improvements in several areas. So, to determine future insights, for each classification of EF-VRP studies, the paper provides the literature gaps and future research needs

    Supply chain finance : a conceptual framework to advance research

    Get PDF
    Supply Chain Finance (SCF) arrangements aim to add value by taking a cooperative approach to financing in the supply chain. SCF has recently enjoyed considerable attention from industry, and providers of capital and technology are investing in platforms to facilitate new applications. A limited number of theoretical and empirical studies on the topic have been published. Current trends suggest, however, that the landscape of SCF is becoming increasingly complex and diverse. We describe some key developments and their implications for firms that (may) implement an SCF arrangement. In particular, we show that strategic and tactical considerations may impact the value of these arrangements. Failure to recognize alternatives and associated trade-offs may entail missed opportunities for firms. We present a framework that positions SCF concepts and shows the need for further research. We conclude with observations on managerial relevance
    corecore