1,134 research outputs found

    Research on Fault Diagnosis Based on Dynamic causality diagram and Fuzzy Reasoning Fusion Method

    Get PDF
    With the progress of urbanization, the demand for elevators has upgraded from safe operation to comfortable, efficient, and all-round demand. The abnormal operation of the elevator is difficult to diagnose due to the complexity of the fault. This paper proposes a fault diagnosis method based on dynamic causality diagram and fuzzy reasoning. The dynamic causality diagram is extended, the intermediate module nodes are added, the description of the intermediate process of the elevator control system is solved, and the complete expression of knowledge is realized. The control timing of the elevator operation is introduced into the network structure of the dynamic causality diagram, which enhances the dynamic characteristics of the network. The causal cycle logic of the dynamic causality diagram is used to represent input and output signals and faults in elevator control systems. In the update of fuzzy rules, the real-time of fuzzy reasoning is enhanced, the search space of fuzzy rule matching is reduced, and the efficiency is improved. This paper combines actual field measurements and experimental data for fault diagnosis. Finally, the simulation, diagnosis and maintenance decision of the fault are realized, and an intelligent solution for elevator fault diagnosis is further proposed

    Knowledge-based diagnosis for aerospace systems

    Get PDF
    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Structures in diagnosis:from theory to medical application

    Get PDF

    An analysis of the application of AI to the development of intelligent aids for flight crew tasks

    Get PDF
    This report presents the results of a study aimed at developing a basis for applying artificial intelligence to the flight deck environment of commercial transport aircraft. In particular, the study was comprised of four tasks: (1) analysis of flight crew tasks, (2) survey of the state-of-the-art of relevant artificial intelligence areas, (3) identification of human factors issues relevant to intelligent cockpit aids, and (4) identification of artificial intelligence areas requiring further research

    Fault detection and root cause diagnosis using dynamic Bayesian network

    Get PDF
    This thesis presents two real time process fault detection and diagnosis (FDD) techniques incorporating process data and prior knowledge. Unlike supervised monitoring techniques, both these methods can perform without having any prior information of a fault. In the first part of this research, a hybrid methodology is developed combining principal component analysis (PCA), Bayesian network (BN) and multiple uncertain (likelihood) evidence to improve the diagnostic capacity of PCA and existing PCA-BN schemes with hard evidence based updating. A dynamic BN (DBN) based FDD methodology is proposed in the later part of this work which provides detection and accurate diagnosis by a single tool. Furthermore, fault propagation pathway is analyzed using the predictive feature of a BN and cause-effect relationships among the process variables. Proposed frameworks are successfully validated by applying to several process models

    Qualitative modelling and simulation of physical systems for a diagnostic purpose

    Get PDF
    This is a Milton Keynes De Montfort University thesisThe goal of a fault-diagnosis system is to obtain an accurate diagnosis at a low cost. In order to reach this goal, many techniques have been used, e.g. qualitative methods and multiple-models. This research investigates a novel strategy for improving the balance accuracy versus cost of consistency-based fault-diagnosis systems. This new strategy is organised around the notion of entities. These are physical entities. such as water pressure or temperature. The functioning of a physical system can involve numerous entities. Because these entities influence each other's behaviour, multiple-fault situations can occur, where several entities are affected by a fault. These situations are called complex multiple-fault situations. The existing fault-diagnosis systems do not perform satisfactorily on complex multiple-fault situations. This is because the set of entities they investigate is fixed from the start of the diagnostic process. As a consequence, depending on the entities included in this set, existing systems either perform an inaccurate diagnosis, or reach an accurate diagnosis at an unnecessarily high cost. This thesis presents a fault-diagnosis strategy called MVDS (standing for Multiple Variable Diagnosis Strategy) designed specifically for performing the efficient diagnosis of complex multiple-fault situations. The underlying principle of MVDS is that it is not possible to know from the start of the diagnostic process which entities are affected. Thus, a diagnostic process with MVDS is undertaken with the investigation of an initial set of entities, and this set of investigated entities is continuously updated along the process, as intermediate results are obtained. In order to illustrate clearly the functioning of MVDS, a fault-scenario using a small example from the air-conditioning domain is diagnosed and the process studied. The investigation of the performance of MVDS on more complex physical systems is undertaken on a larger case-study using a hot-water and heating system. In MVDS, it is possible to disable the adaptability of the set of investigated entities, so that it can be run with a fixed set. By doing so, the performance of the strategy in MVDS can be compared to the performance of traditional approaches which use a fixed set of investigated entities. The study-case shows that MVDS reaches more accurate results than traditional approaches, and that this accuracy is obtained at a low cost, since unnecessary measurements of entities are avoided. Furthermore, the strategy produces a complete trace of the process that is close to common-sense reasoning. It is also a co-operative strategy where the operator can intervene. Summary of the main research contributions: - The issue of diagnosing complex multiple-fault situations is specifically addressed for the first time. The problem caused by this diagnosis task is defined, and a strategy is constructed in order to diagnose efficiently the complex multiple-fault situations. The strategy is implemented in MVDS and tested on an example and a case-study. - Risk characteristics have been described. They allow to evaluate how prone to complex muItiple-fault situations is a physical system. - Hot-water and heating systems are offered as a new domain of research for consistency-based fault-diagnosis systems. - The inclusion of co-operation into the fault-diagnosis process is a novel approach. Its potential advantages have been identified

    AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities and Challenges

    Full text link
    Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes, particularly in cloud infrastructures, to provide actionable insights with the primary goal of maximizing availability. There are a wide variety of problems to address, and multiple use-cases, where AI capabilities can be leveraged to enhance operational efficiency. Here we provide a review of the AIOps vision, trends challenges and opportunities, specifically focusing on the underlying AI techniques. We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful. We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions. We discuss the problem formulation for each task, and then present a taxonomy of techniques to solve these problems. We also identify relatively under explored topics, especially those that could significantly benefit from advances in AI literature. We also provide insights into the trends in this field, and what are the key investment opportunities

    Data-Driven Fault Detection and Reasoning for Industrial Monitoring

    Get PDF
    This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book
    corecore