4,276 research outputs found

    Resource and thermal management in 3D-stacked multi-/many-core systems

    Full text link
    Continuous semiconductor technology scaling and the rapid increase in computational needs have stimulated the emergence of multi-/many-core processors. While up to hundreds of cores can be placed on a single chip, the performance capacity of the cores cannot be fully exploited due to high latencies of interconnects and memory, high power consumption, and low manufacturing yield in traditional (2D) chips. 3D stacking is an emerging technology that aims to overcome these limitations of 2D designs by stacking processor dies over each other and using through-silicon-vias (TSVs) for on-chip communication, and thus, provides a large amount of on-chip resources and shortens communication latency. These benefits, however, are limited by challenges in high power densities and temperatures. 3D stacking also enables integrating heterogeneous technologies into a single chip. One example of heterogeneous integration is building many-core systems with silicon-photonic network-on-chip (PNoC), which reduces on-chip communication latency significantly and provides higher bandwidth compared to electrical links. However, silicon-photonic links are vulnerable to on-chip thermal and process variations. These variations can be countered by actively tuning the temperatures of optical devices through micro-heaters, but at the cost of substantial power overhead. This thesis claims that unearthing the energy efficiency potential of 3D-stacked systems requires intelligent and application-aware resource management. Specifically, the thesis improves energy efficiency of 3D-stacked systems via three major components of computing systems: cache, memory, and on-chip communication. We analyze characteristics of workloads in computation, memory usage, and communication, and present techniques that leverage these characteristics for energy-efficient computing. This thesis introduces 3D cache resource pooling, a cache design that allows for flexible heterogeneity in cache configuration across a 3D-stacked system and improves cache utilization and system energy efficiency. We also demonstrate the impact of resource pooling on a real prototype 3D system with scratchpad memory. At the main memory level, we claim that utilizing heterogeneous memory modules and memory object level management significantly helps with energy efficiency. This thesis proposes a memory management scheme at a finer granularity: memory object level, and a page allocation policy to leverage the heterogeneity of available memory modules and cater to the diverse memory requirements of workloads. On the on-chip communication side, we introduce an approach to limit the power overhead of PNoC in (3D) many-core systems through cross-layer thermal management. Our proposed thermally-aware workload allocation policies coupled with an adaptive thermal tuning policy minimize the required thermal tuning power for PNoC, and in this way, help broader integration of PNoC. The thesis also introduces techniques in placement and floorplanning of optical devices to reduce optical loss and, thus, laser source power consumption.2018-03-09T00:00:00

    Performance Evaluation of Job Scheduling and Resource Allocation in Apache Spark

    Get PDF
    Advancements in data acquisition techniques and devices are revolutionizing the way image data are collected, managed and processed. Devices such as time-lapse cameras and multispectral cameras generate large amount of image data daily. Therefore, there is a clear need for many organizations and researchers to deal with large volume of image data efficiently. On the other hand, Big Data processing on distributed systems such as Apache Spark are gaining popularity in recent years. Apache Spark is a widely used in-memory framework for distributed processing of large datasets on a cluster of inexpensive computers. This thesis proposes using Spark for distributed processing of large amount of image data in a time efficient manner. However, to share cluster resources efficiently, multiple image processing applications submitted to the cluster must be appropriately scheduled by Spark cluster managers to take advantage of all the compute power and storage capacity of the cluster. Spark can run on three cluster managers including Standalone, Mesos and YARN, and provides several configuration parameters that control how resources are allocated and scheduled. Using default settings for these multiple parameters is not enough to efficiently share cluster resources between multiple applications running concurrently. This leads to performance issues and resource underutilization because cluster administrators and users do not know which Spark cluster manager is the right fit for their applications and how the scheduling behaviour and parameter settings of these cluster managers affect the performance of their applications in terms of resource utilization and response times. This thesis parallelized a set of heterogeneous image processing applications including Image Registration, Flower Counter and Image Clustering, and presents extensive comparisons and analyses of running these applications on a large server and a Spark cluster using three different cluster managers for resource allocation, including Standalone, Apache Mesos and Hodoop YARN. In addition, the thesis examined the two different job scheduling and resource allocations modes available in Spark: static and dynamic allocation. Furthermore, the thesis explored the various configurations available on both modes that control speculative execution of tasks, resource size and the number of parallel tasks per job, and explained their impact on image processing applications. The thesis aims to show that using optimal values for these parameters reduces jobs makespan, maximizes cluster utilization, and ensures each application is allocated a fair share of cluster resources in a timely manner

    Autonomic Database Management: State of the Art and Future Trends

    Get PDF
    In recent years, Database Management Systems (DBMS) have increased significantly in size and complexity, increasing the extent to which database administration is a time-consuming and expensive task. Database Administrator (DBA) expenses have become a significant part of the total cost of ownership. This results in the need to develop Autonomous Database Management systems (ADBMS) that would manage themselves without human intervention. Accordingly, this paper evaluates the current state of autonomous database systems and identifies gaps and challenges in the achievement of fully autonomic databases. In addition to highlighting technical challenges and gaps, we identify one human factor, gaining the trust of DBAs, as a major obstacle. Without human acceptance and trust, the goal of achieving fully autonomic databases cannot be realized

    Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution

    Get PDF
    Cloud controllers aim at responding to application demands by automatically scaling the compute resources at runtime to meet performance guarantees and minimize resource costs. Existing cloud controllers often resort to scaling strategies that are codified as a set of adaptation rules. However, for a cloud provider, applications running on top of the cloud infrastructure are more or less black-boxes, making it difficult at design time to define optimal or pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions often is delegated to the cloud application. Yet, in most cases, application developers in turn have limited knowledge of the cloud infrastructure. In this paper, we propose learning adaptation rules during runtime. To this end, we introduce FQL4KE, a self-learning fuzzy cloud controller. In particular, FQL4KE learns and modifies fuzzy rules at runtime. The benefit is that for designing cloud controllers, we do not have to rely solely on precise design-time knowledge, which may be difficult to acquire. FQL4KE empowers users to specify cloud controllers by simply adjusting weights representing priorities in system goals instead of specifying complex adaptation rules. The applicability of FQL4KE has been experimentally assessed as part of the cloud application framework ElasticBench. The experimental results indicate that FQL4KE outperforms our previously developed fuzzy controller without learning mechanisms and the native Azure auto-scaling
    corecore