4 research outputs found

    Dynamic Tree Routing under the ``Matching with Consumption'' Model

    No full text

    Dynamic Tree Routing under the "Matching with Consumption" Model

    No full text
    . In this paper we consider dynamic routing on trees under the "matching with consumption" routing model, a natural extension of the matching routing model introduced by Alon, Chung and Graham [1, 2], which allows for the consumption of packets when they reach their destination. We present an asymptotically optimal on-line algorithm that routes k packets to their destination within d(k \Gamma 1) + d \Delta dist routing steps where d is the degree of tree T on which the routing takes place and dist is the maximum distance some packet has to travel. We present an off-line algorithm that solves the same problem within 2(k \Gamma 1) + dist steps. Versions of both the on-line and the off-line algorithms which avoid live-lock situations are also provided. We establish a close relation between the "matching with consumption" and the hot-potato routing models, and we exploit it in the analysis of our routing algorithms. 1 Introduction In a packet routing problem on a connected undirected gra..

    Mathematical framework for designing energy matching and trading within green building neighbourhood system

    Get PDF
    Nowadays, energy efficiency, energy matching and trading, power production based on renewable energyresources, improving reliability, increasing power quality and other concepts are providing the most important topics in the power systems analysis especially in green building in the neighbourhood systems (GBNS). To do so, the need to obtain the optimal and economical dispatch of energy matching and trading should be expressed at the same time. Although, there are some solutions in literature but there is still a lack of mathematical framework for energy matching and trading in GBNS. In this dissertation, a mathematical framework is developed with the aim of supporting an optimal energy matching and trading within a GBNS.This aim will be achieved through several optimization algorithms based on heuristic and realistic optimization techniques. The appearance of new methods based on optimization algorithms and the challenges of managing a system contain different type of energy resources was also replicating the challenges encountered in this thesis. As a result, these methods are needed to be applied in such a way to achieve maximum efficiency,enhance the economic dispatch as well as to provide the best performance in GBNS. In order to validate theproposed framework, several case studies are simulated in this thesis and optimized based on various optimization algorithms. The better performances of the proposed algorithms are shown in comparison with the realistic optimization algorithms, and its effectiveness is validated over several GBs. The obtained results show convergence speed increase and the remarkable improvement of efficiency and accuracy under different condition. The obtained results clearly show that the proposed framework is effective in achieving optimal dispatch of generation resources in systems with multiple GBs and minimizing the market clearing price for the consumers and providing the better utilization of renewable energy sources
    corecore