9,648 research outputs found

    A survey on pseudonym changing strategies for Vehicular Ad-Hoc Networks

    Full text link
    The initial phase of the deployment of Vehicular Ad-Hoc Networks (VANETs) has begun and many research challenges still need to be addressed. Location privacy continues to be in the top of these challenges. Indeed, both of academia and industry agreed to apply the pseudonym changing approach as a solution to protect the location privacy of VANETs'users. However, due to the pseudonyms linking attack, a simple changing of pseudonym shown to be inefficient to provide the required protection. For this reason, many pseudonym changing strategies have been suggested to provide an effective pseudonym changing. Unfortunately, the development of an effective pseudonym changing strategy for VANETs is still an open issue. In this paper, we present a comprehensive survey and classification of pseudonym changing strategies. We then discuss and compare them with respect to some relevant criteria. Finally, we highlight some current researches, and open issues and give some future directions

    iTETRIS Platform Architecture for the Integration of Cooperative Traffic and Wireless Simulations

    Get PDF
    The use of cooperative wireless communications can support driving through dynamic exchange of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) messages. Traffic applications based on such systems will be able to generate a safer, faster, cheaper and cleaner way for people and goods to move. In this context, the iTERIS project aims at providing the framework to combine traffic mobility and wireless communication simulations for large scale testing of traffic management solutions based on cooperative systems. This paper addresses the description and explanation of the implementation choices taken to build a modular and interoperable architecture integrating heterogeneous traffic and wireless simulators, and application algorithms supporting traffic management strategies. The functions of an “in-between” control system for managing correct simulation executions over the platform are presented. The inter-block interaction procedures identified to ensure optimum data transfer for simulation efficiency are also introduced

    A Simulation-Optimization Method for Signal Synchronization with Bus Priority and Driver Speed Advisory to Connected Vehicles

    Get PDF
    The paper introduces a model-based optimization procedure for the design of a control system with signal synchronization, real-time bus priority and green light speed advisory to car drivers. The traffic model simulates car traffic as platoons and bus movements individually. An optimization routine simulates the effect of different bus priority rules, which can be actuated online through bus identification devices and applies a metaheuristic algorithm to optimize signal settings. The macroscopic model and the design method have been applied and also tested in microsimulation on a principal street in Rome with a tram line on a reserved lane. Results obtained show that offline signal optimization and online signal priority can significantly reduce both travel times of bus riders and delays for total traffic. Similarly, speed advisory to drivers, if considered in signal optimization, can improve not only drivers' delays but even transit passengers' delays because it allows more efficient use of the road
    • …
    corecore