413 research outputs found

    Humanoid robot orientation stabilization by shoulder joint motion during locomotion

    Get PDF
    Arm swing action is a natural phenomenon that emerges in biped locomotion. A shoulder torque reference generation method is introduced in this paper to utilize arms of a humanoid robot during locomotion. Main idea of the technique is the employment of shoulder joint actuation torques in order to stabilize body orientation. The reference torques are computed by a method which utilizes proportional and derivative actions. Body orientation angles serve as the inputs of this system. The approach is tested via simulations with the 3D full-dynamics model of the humanoid robot SURALP (Sabanci University Robotics Research Laboratory Platform). Results indicate that the method is successful in reducing oscillations of body angles during bipedal walking

    Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot

    Get PDF
    This paper presents three feedback controllers that achieve an asymptotically stable, periodic, and fast walking gait for a 3D (spatial) bipedal robot consisting of a torso, two legs, and passive (unactuated) point feet. The contact between the robot and the walking surface is assumed to inhibit yaw rotation. The studied robot has 8 DOF in the single support phase and 6 actuators. The interest of studying robots with point feet is that the robot's natural dynamics must be explicitly taken into account to achieve balance while walking. We use an extension of the method of virtual constraints and hybrid zero dynamics, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit. This method allows the computations to be carried out on a 2-DOF subsystem of the 8-DOF robot model. The stability of the walking gait under closed-loop control is evaluated with the linearization of the restricted Poincar\'e map of the hybrid zero dynamics. Three strategies are explored. The first strategy consists of imposing a stability condition during the search of a periodic gait by optimization. The second strategy uses an event-based controller. In the third approach, the effect of output selection is discussed and a pertinent choice of outputs is proposed, leading to stabilization without the use of a supplemental event-based controller

    Adaptive, fast walking in a biped robot under neuronal control and learning

    Get PDF
    Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (> 3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks

    On the mechanical contribution of head stabilization to passive dynamics of anthropometric walkers

    Get PDF
    During the steady gait, humans stabilize their head around the vertical orientation. While there are sensori-cognitive explanations for this phenomenon, its mechanical e fect on the body dynamics remains un-explored. In this study, we take profit from the similarities that human steady gait share with the locomotion of passive dynamics robots. We introduce a simplified anthropometric D model to reproduce a broad walking dynamics. In a previous study, we showed heuristically that the presence of a stabilized head-neck system significantly influences the dynamics of walking. This paper gives new insights that lead to understanding this mechanical e fect. In particular, we introduce an original cart upper-body model that allows to better understand the mechanical interest of head stabilization when walking, and we study how this e fect is sensitive to the choice of control parameters

    Trajectory Optimization Through Contacts and Automatic Gait Discovery for Quadrupeds

    Full text link
    In this work we present a trajectory Optimization framework for whole-body motion planning through contacts. We demonstrate how the proposed approach can be applied to automatically discover different gaits and dynamic motions on a quadruped robot. In contrast to most previous methods, we do not pre-specify contact switches, timings, points or gait patterns, but they are a direct outcome of the optimization. Furthermore, we optimize over the entire dynamics of the robot, which enables the optimizer to fully leverage the capabilities of the robot. To illustrate the spectrum of achievable motions, here we show eight different tasks, which would require very different control structures when solved with state-of-the-art methods. Using our trajectory Optimization approach, we are solving each task with a simple, high level cost function and without any changes in the control structure. Furthermore, we fully integrated our approach with the robot's control and estimation framework such that optimization can be run online. By demonstrating a rough manipulation task with multiple dynamic contact switches, we exemplarily show how optimized trajectories and control inputs can be directly applied to hardware.Comment: Video: https://youtu.be/sILuqJBsyK

    Understanding preferred leg stiffness and layered control strategies for locomotion

    Get PDF
    Despite advancement in the field of robotics, current legged robots still cannot achieve the kind of locomotion stability animals and humans have. In order to develop legged robots with greater stability, we need to better understand general locomotion dynamics and control principles. Here we demonstrate that a mathematical modeling approach could greatly enable the discovery and understanding of general locomotion principles. ^ It is found that animal leg stiffness when scaled by its weight and leg length falls in a narrow region between 7 and 27. Rarely in biology does such a universal preference exist. It is not known completely why this preference exists. Here, through simulation of the simple actuated-SLIP model, we show that the biological relative leg stiffness corresponds to the theoretical minimum of mechanical cost of transport. This strongly implies that animals choose leg stiffness in this region to reduce energetic cost. In addition, it is found that the stability of center-of-mass motion is also optimal when biological relative leg stiffness values are selected for actuated-SLIP. Therefore, motion stability could be another reason why animals choose this particular relative leg stiffness range. ^ We then extended actuated-SLIP by including realistic trunk pitching dynamics. At first, to form the Trunk Spring-Loaded Inverted Pendulum (Trunk-SLIP) model, the point mass of actuated-SLIP is replaced by a rigid body trunk while the leg remains massless and springy. It is found that exproprioceptive feedback during the flight phase is essential to the overall motion stability including trunk pitching. Either proprioceptive or exproprioceptive feedback during stance could generate stable running motion provided that exproprioceptive feedback is used during flight. When both kinds of feedback are used during stance, the overall stability is improved. However, stability with respect to speed perturbations remains limited. ^ Built upon Trunk-SLIP, we develop a model called extended Trunk-SLIP with trunk and leg masses. We then develop a hierarchical control strategy where different layers of control are added and tuned. When each layer is added, the overall motion stability is improved. This layer by layer strategy is simple in nature and allows quick controller design and tuning as only a limited number of control parameters needs to be added and tuned at each step. In the end, we propose a future control layer where the commanded speed is controlled to achieve a higher level target such as might be needed during smooth walking to running transitions. ^ In summary, we show here that the simple actuated-SLIP model is able to predict animal center-of-mass translation stability and overall mechanical cost of transport. More advanced models are then developed based upon actuated-SLIP. With a simple layer by layer control strategy, robust running motion can be discovered. Overall, this knowledge could help better understand locomotion dynamics in general. In addition, the developed control strategy could, in principle be applied to future hip based legged robot design

    Motion Control of the Hybrid Wheeled-Legged Quadruped Robot Centauro

    Get PDF
    Emerging applications will demand robots to deal with a complex environment, which lacks the structure and predictability of the industrial workspace. Complex scenarios will require robot complexity to increase as well, as compared to classical topologies such as fixed-base manipulators, wheeled mobile platforms, tracked vehicles, and their combinations. Legged robots, such as humanoids and quadrupeds, promise to provide platforms which are flexible enough to handle real world scenarios; however, the improved flexibility comes at the cost of way higher control complexity. As a trade-off, hybrid wheeled-legged robots have been proposed, resulting in the mitigation of control complexity whenever the ground surface is suitable for driving. Following this idea, a new hybrid robot called Centauro has been developed inside the Humanoid and Human Centered Mechatronics lab at Istituto Italiano di Tecnologia (IIT). Centauro is a wheeled-legged quadruped with a humanoid bi-manual upper-body. Differently from other platform of similar concept, Centauro employs customized actuation units, which provide high torque outputs, moderately fast motions, and the possibility to control the exerted torque. Moreover, with more than forty motors moving its limbs, Centauro is a very redundant platform, with the potential to execute many different tasks at the same time. This thesis deals with the design and development of a software architecture, and a control system, tailored to such a robot; both wheeled and legged locomotion strategies have been studied, as well as prioritized, whole-body and interaction controllers exploiting the robot torque control capabilities, and capable to handle the system redundancy. A novel software architecture, made of (i) a real-time robotic middleware, and (ii) a framework for online, prioritized Cartesian controller, forms the basis of the entire work

    Effects of Hip and Ankle Moments on Running Stability: Simulation of a Simplified Model

    Get PDF
    In human running, the ankle, knee, and hip moments are known to play different roles to influence the dynamics of locomotion. A recent study of hip moments and several hip-based legged robots have revealed that hip actuation can significantly improve the stability of locomotion, whether controlled or uncontrolled. Ankle moments are expected to also significantly affect running stability, but in a different way than hip moments. Here we seek to advance the current theory of dynamic running and associated legged robots by determining how simple open-loop ankle moments could affect running stability. We simulate a dynamical model, and compare it with a previous study on the role of hip moments. The model is relatively simple with a rigid trunk and a springy leg to represent the effective stiffness of the knee. At the hip we use a previously established proportional and derivative controlled moment with pitching angle as feedback. At the ankle we use the simplest ankle actuation, a constant ankle torque as a rough approximation of the net positive work done by the ankle moment during human locomotion. Even in this simplified model, we find that ankle and hip moments can affect the center of mass (COM) and pitching dynamics in distinct ways. Analysis of the governing equations shows that hip moments can directly influence the upper body balance, as well as indirectly influence the center of mass translation dynamics. However, ankle moments can only indirectly influence both. Simulation of the governing equations shows that the addition of ankle moment has significant benefits to the quality of locomotion stability, such as a larger basin of attraction. We also find that adding the ankle moments generally expands the range of parameters and velocities for which the model displays stable solutions. Overall, these findings suggest that ankle moments would play a significant role in improving the quality and range of running stability in a system with a rigid trunk and a telescoping leg, which would be a natural extension of current springy leg robots. Further, these results provide insights into the role that ankle moments might play in human locomotion

    Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion

    Get PDF
    In recent years, we witnessed an ever increasing number of successful hardware implementations of motion planners for legged robots. If one common property is to be identified among these real-world applications, that is the ability of online planning. Online planning is forgiving, in the sense that it allows to relentlessly compensate for external disturbances of whatever form they might be, ranging from unmodeled dynamics to external pushes or unexpected obstacles and, at the same time, follow user commands. Initially replanning was restricted only to heuristic-based planners that exploit the low computational effort of simplified dynamic models. Such models deliberately only capture the main dynamics of the system, thus leaving to the controllers the issue of anchoring the desired trajectory to the whole body model of the robot. In recent years, however, we have seen a number of new approaches attempting to increase the accuracy of the dynamic formulation without trading-off the computational efficiency of simplified models. In this dissertation, as an example of successful hardware implementation of heuristics and simplified model-based locomotion, I describe the framework that I developed for the generation of an omni-directional bounding gait for the HyQ quadruped robot. By analyzing the stable limit cycles for the sagittal dynamics and the Center of Pressure (CoP) for the lateral stabilization, the described locomotion framework is able to achieve a stable bounding while adapting to terrains of mild roughness and to sudden changes of the user desired linear and angular velocities. The next topic reported and second contribution of this dissertation is my effort to formulate more descriptive simplified dynamic models, without trading off their computational efficiency, in order to extend the navigation capabilities of legged robots to complex geometry environments. With this in mind, I investigated the possibility of incorporating feasibility constraints in these template models and, in particular, I focused on the joint torques limits which are usually neglected at the planning stage. In this direction, the third contribution discussed in this thesis is the formulation of the so called actuation wrench polytope (AWP), defined as the set of feasible wrenches that an articulated robot can perform given its actuation limits. Interesected with the contact wrench cone (CWC), this yields a new 6D polytope that we name feasible wrench polytope (FWP), defined as the set of all wrenches that a legged robot can realize given its actuation capabilities and the friction constraints. Results are reported where, thanks to efficient computational geometry algorithms and to appropriate approximations, the FWP is employed for a one-step receding horizon optimization of center of mass trajectory and phase durations given a predefined step sequence on rough terrains. For the sake of reachable workspace augmentation, I then decided to trade off the generality of the FWP formulation for a suboptimal scenario in which a quasi-static motion is assumed. This led to the definition of the, so called, local/instantaneous actuation region and of the global actuation/feasible region. They both can be seen as different variants of 2D linear subspaces orthogonal to gravity where the robot is guaranteed to place its own center of mass while being able to carry its own body weight given its actuation capabilities. These areas can be intersected with the well known frictional support region, resulting in a 2D linear feasible region, thus providing an intuitive tool that enables the concurrent online optimization of actuation consistent CoM trajectories and target foothold locations on rough terrains
    corecore