67 research outputs found

    A stopping criterion for multi-objective optimization evolutionary algorithms

    Get PDF
    This Paper Puts Forward A Comprehensive Study Of The Design Of Global Stopping Criteria For Multi-Objective Optimization. In This Study We Propose A Global Stopping Criterion, Which Is Terms As Mgbm After The Authors Surnames. Mgbm Combines A Novel Progress Indicator, Called Mutual Domination Rate (Mdr) Indicator, With A Simplified Kalman Filter, Which Is Used For Evidence-Gathering Purposes. The Mdr Indicator, Which Is Also Introduced, Is A Special-Purpose Progress Indicator Designed For The Purpose Of Stopping A Multi-Objective Optimization. As Part Of The Paper We Describe The Criterion From A Theoretical Perspective And Examine Its Performance On A Number Of Test Problems. We Also Compare This Method With Similar Approaches To The Issue. The Results Of These Experiments Suggest That Mgbm Is A Valid And Accurate Approach. (C) 2016 Elsevier Inc. All Rights Reserved.This work was funded in part by CNPq BJT Project 407851/2012-7 and CNPq PVE Project 314017/2013-

    Portfolio implementation risk management using evolutionary multiobjective optimization

    Get PDF
    Portfoliomanagementbasedonmean-varianceportfoliooptimizationissubjecttodifferent sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancybetweentargetandpresentportfolios,causedbytradingstrategies,mayexposeinvestors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance–covariance matrix.Sandra Garcia-Rodriguez and David Quintana acknowledge financial support granted by the Spanish Ministry of Economy and Competitivity under grant ENE2014-56126-C2-2-R. Roman Denysiuk and Antonio Gaspar-Cunha were supported by the Portuguese Foundation for Science and Technology under grant PEst-C/CTM/LA0025/2013 (Projecto Estratégico-LA 25-2013-2014-Strategic Project-LA 25-2013-2014).info:eu-repo/semantics/publishedVersio

    Evolutionary multiobjective optimization for automatic agent-based model calibration: A comparative study

    Get PDF
    This work was supported by the Spanish Agencia Estatal de Investigacion, the Andalusian Government, the University of Granada, and European Regional Development Funds (ERDF) under Grants EXASOCO (PGC2018-101216-B-I00), SIMARK (P18-TP-4475), and AIMAR (A-TIC-284-UGR18). Manuel Chica was also supported by the Ramon y Cajal program (RYC-2016-19800).The authors would like to thank the ``Centro de Servicios de Informática y Redes de Comunicaciones'' (CSIRC), University of Granada, for providing the computing resources (Alhambra supercomputer).Complex problems can be analyzed by using model simulation but its use is not straight-forward since modelers must carefully calibrate and validate their models before using them. This is specially relevant for models considering multiple outputs as its calibration requires handling different criteria jointly. This can be achieved using automated calibration and evolutionary multiobjective optimization methods which are the state of the art in multiobjective optimization as they can find a set of representative Pareto solutions under these restrictions and in a single run. However, selecting the best algorithm for performing automated calibration can be overwhelming. We propose to deal with this issue by conducting an exhaustive analysis of the performance of several evolutionary multiobjective optimization algorithms when calibrating several instances of an agent-based model for marketing with multiple outputs. We analyze the calibration results using multiobjective performance indicators and attainment surfaces, including a statistical test for studying the significance of the indicator values, and benchmarking their performance with respect to a classical mathematical method. The results of our experimentation reflect that those algorithms based on decomposition perform significantly better than the remaining methods in most instances. Besides, we also identify how different properties of the problem instances (i.e., the shape of the feasible region, the shape of the Pareto front, and the increased dimensionality) erode the behavior of the algorithms to different degrees.Spanish Agencia Estatal de InvestigacionAndalusian GovernmentUniversity of GranadaEuropean Commission PGC2018-101216-B-I00 P18-TP-4475 A-TIC-284-UGR18Spanish Government RYC-2016-1980

    A multi-objective evolutionary approach to simulation-based optimisation of real-world problems.

    Get PDF
    This thesis presents a novel evolutionary optimisation algorithm that can improve the quality of solutions in simulation-based optimisation. Simulation-based optimisation is the process of finding optimal parameter settings without explicitly examining each possible configuration of settings. An optimisation algorithm generates potential configurations and sends these to the simulation, which acts as an evaluation function. The evaluation results are used to refine the optimisation such that it eventually returns a high-quality solution. The algorithm described in this thesis integrates multi-objective optimisation, parallelism, surrogate usage, and noise handling in a unique way for dealing with simulation-based optimisation problems incurred by these characteristics. In order to handle multiple, conflicting optimisation objectives, the algorithm uses a Pareto approach in which the set of best trade-off solutions is searched for and presented to the user. The algorithm supports a high degree of parallelism by adopting an asynchronous master-slave parallelisation model in combination with an incremental population refinement strategy. A surrogate evaluation function is adopted in the algorithm to quickly identify promising candidate solutions and filter out poor ones. A novel technique based on inheritance is used to compensate for the uncertainties associated with the approximative surrogate evaluations. Furthermore, a novel technique for multi-objective problems that effectively reduces noise by adopting a dynamic procedure in resampling solutions is used to tackle the problem of real-world unpredictability (noise). The proposed algorithm is evaluated on benchmark problems and two complex real-world problems of manufacturing optimisation. The first real-world problem concerns the optimisation of a production cell at Volvo Aero, while the second one concerns the optimisation of a camshaft machining line at Volvo Cars Engine. The results from the optimisations show that the algorithm finds better solutions for all the problems considered than existing, similar algorithms. The new techniques for dealing with surrogate imprecision and noise used in the algorithm are identified as key reasons for the good performance.University of Skövde Knowledge Foundation Swede

    Pareto or non-Pareto: Bi-criterion evolution in multi-objective optimization

    Get PDF
    It is known that Pareto dominance has its own weaknesses as the selection criterion in evolutionary multi-objective optimization. Algorithms based on Pareto dominance can suffer from slow convergence to the optimal front, inferior performance on problems with many objectives, etc. Non-Pareto criterion, such as decomposition-based criterion and indicator-based criterion, has already shown promising results in this regard, but its high selection pressure may lead the algorithm to prefer some specific areas of the problem’s Pareto front, especially when the front is highly irregular. In this paper, we propose a bi-criterion evolution framework of Pareto criterion and non-Pareto criterion, which attempts to make use of their strengths and compensates for each other’s weaknesses. The proposed framework consists of two parts, Pareto criterion evolution and non-Pareto criterion evolution. The two parts work collaboratively, with an abundant exchange of information to facilitate each other’s evolution. Specifically, the non-Pareto criterion evolution leads the Pareto criterion evolution forward and the Pareto criterion evolution compensates the possible diversity loss of the non-Pareto criterion evolution. The proposed framework keeps the freedom on the implementation of the non-Pareto criterion evolution part, thus making it applicable for any non-Pareto-based algorithm. In the Pareto criterion evolution, two operations, population maintenance and individual exploration, are presented. The former is to maintain a set of representative nondominated individuals, and the latter is to explore some promising areas which are undeveloped (or not well-developed) in the non-Pareto criterion evolution. Experimental results have shown the effectiveness of the proposed framework. The bi-criterion evolution works well on seven groups of 42 test problems with various characteristics, including those where Pareto-based algorithms or non-Paretobased algorithms strugg- e

    An adaptation reference-point-based multiobjective evolutionary algorithm

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.It is well known that maintaining a good balance between convergence and diversity is crucial to the performance of multiobjective optimization algorithms (MOEAs). However, the Pareto front (PF) of multiobjective optimization problems (MOPs) affects the performance of MOEAs, especially reference point-based ones. This paper proposes a reference-point-based adaptive method to study the PF of MOPs according to the candidate solutions of the population. In addition, the proportion and angle function presented selects elites during environmental selection. Compared with five state-of-the-art MOEAs, the proposed algorithm shows highly competitive effectiveness on MOPs with six complex characteristics

    VSD-MOEA: A Dominance-Based Multiobjective Evolutionary Algorithm with Explicit Variable Space Diversity Management

    Get PDF
    Most state-of-the-art Multiobjective Evolutionary Algorithms (moeas) promote the preservation of diversity of objective function space but neglect the diversity of decision variable space. The aim of this article is to show that explicitly managing the amount of diversity maintained in the decision variable space is useful to increase the quality of moeas when taking into account metrics of the objective space. Our novel Variable Space Diversity-based MOEA (vsd-moea) explicitly considers the diversity of both decision variable and objective function space. This information is used with the aim of properly adapting the balance between exploration and intensification during the optimization process. Particularly, at the initial stages, decisions made by the approach are more biased by the information on the diversity of the variable space, whereas it gradually grants more importance to the diversity of objective function space as the evolution progresses. The latter is achieved through a novel density estimator. The new method is compared with state-of-art moeas using several benchmarks with two and three objectives. This novel proposal yields much better results than state-of-the-art schemes when considering metrics applied on objective function space, exhibiting a more stable and robust behavior

    Single- and multi-objective evolutionary design optimization assisted by gaussian random field metamodels

    Get PDF
    In this thesis numerical optimization methods for single- and multi-objective design optimization with time-consuming computer experiments are studied in theory and practise. We show that the assistance by metamodeling techniques (or: surrogates) can significantly accelerate evolutionary (multi-objective) optimization algorithms (E(M)OA) in the presence of time consuming evaluations. A further increase of robustness can be achieved by taking confidence information for the imprecise evaluations into account. Gaussian random field metamodels, also referred to as Kriging techniques, can provide such confidence information. The confidence information is used to figure out ‘white spots’ in the functional landscape to be explored. The thesis starts with a detailed discussion of computational aspects related to the Kriging algorithm. Then, algorithms for optimization with single objectives, constraints and multiple objectives are introduced. For the latter, with the S-metric selection EMOA (SMS-EMOA) a new powerful algorithm for Pareto optimization is introduced, which outperforms established techniques on standard benchmarks. The concept of a filter is introduced to couple E(M)OA with metamodeling techniques. Various filter concepts are compared, both by means of deducing their properties theoretically and by experiments on artificial landscapes. For the latter studies we propose new analytical indicators, like the inversion metric and the recall/precision measure. Moreover, sufficient conditions for global convergence in probability are established. Finally the practical benefit of the new techniques is demonstrated by solving several industrial optimization problems, including airfoil optimization, solidification process design, metal forming, and electromagnetic compatibility design and comparing the results to those obtained by standard algorithms
    corecore