10,148 research outputs found

    Discussion of the technology and research in fuel injectors common rail system

    Get PDF
    Common rail is one of the most important components in a diesel and gasoline direct injection system. It features a high-pressure (100 bar) fuel rail feeding solenoid valves, as opposed to a low-pressure fuel pump feeding unit injectors. Third-generation common rail diesels now feature piezoelectric injectors for increased precision, with fuel pressures up to 2,500 bar. The purpose of this review paper is to investigate the technology and research in fuel injectors common rail system. This review paper focuses on component of common rail injection system, pioneer of common rail injection, characteristics of common rail injection system, method to reduce smoke and NOx emission simultaneously and impact of common rail injection system. Based on our research, it can be concluded that common rail injection gives many benefit such as good for the engine performance, safe to use, and for to reduce the emission of the vehicle. Fuel injection common rail system is the modern technology that must be developed. Nowadays, our earth is polluting by vehicle output such as smoke. If the common rail system is developed, it can reduce the pollution and keep our atmosphere clean and safe

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    AC voltage regulation of a bidirectional high-frequency link converter using a deadbeat controller

    Get PDF
    This paper presents a digital controller for AC voltage regulation of a bidirectional high-frequency link (BHFL) inverter using Deadbeat control. The proposed controller consists of inner current loop, outer voltage loop and a feed-forward controller, which imposes a gain scheduling effect according to the reference signal to compensate the steady-state error of the system. The main property of the proposed controller is that the current- and the voltage-loop controllers have the same structure, and use the same sampling period. This simplifies the design and implementation processes. To improve the overall performance of the system, additional disturbance decoupling networks are employed. This takes into account the model discretization effect. Therefore, accurate disturbance decoupling can be achieved, and the system robustness towards load variations is increased. To avoid transformer saturation due to low frequency voltage envelopes, an equalized pulse width modulation (PWM) technique has been introduced. The proposed controller has been realized using the DS1104 digital signal processor (DSP) from dSPACE. Its performances have been tested on a one kVA prototype inverter. Experimental results showed that the proposed controller has very fast dynamic and good steady-state responses even under highly nonlinear loads

    A New Sliding Mode Control Strategy for Variable-Speed Wind Turbine Power Maximization

    Get PDF
    This is the peer reviewed version of the following article: Khalfallah Tahir, Cheikh Belfedal, Tayeb Allaoui, Mouloud Denai, and M’hamed Doumi, ‘A new sliding mode control strategy for variable‐speed wind turbine power maximization’, International Transactions on Electrical Energy Systems, Vol. 28 (4): e2513, April 2018, which has been published in final form at https://doi.org/10.1002/etep.2513. Under embargo until 10 January 2019. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The paper proposes a new sliding mode power control strategy for a wound-field synchronous generator-based variable speed wind energy conversion systems to maximize the power extracted from the wind turbine. The proposed controller can handle the inherent nonlinearities in wind energy conversion systems and the randomness of the wind speed as well as the uncertainties of the model and external disturbances. To reduce the chattering phenomenon that characterizes conventional sliding mode control, a sigmoid function with a variable boundary layer is proposed. The adaptive switching gains are adjusted on-line by using a fuzzy logic-based technique. Several simulation scenarios were performed to evaluate the performance of the proposed control scheme. The results demonstrate that this controller provides excellent response characteristics, is robust against parameter variations, and free from chattering phenomenon as compared with the conventional sliding mode control.Peer reviewedFinal Accepted Versio

    Sliding mode control of an active power filter with photovoltaic maximum power tracking

    Get PDF
    Nowadays, the increase in solar energy installations as a source of energy is growing considerably. The connection to the grid of these installations generally injects all the power obtained from the panel as active power, making zero the reactive power. The same power injection system can be used to achieve a unit power factor if the active filter feature is integrated in it. In this paper, an active power filter (APF) that can control both, the MPP (maximum power point) of a photovoltaic system (PV) and the power factor of a nonlinear load connected to the grid using a three phase DC/AC power inverter with new sliding mode controllers is presented. Perturbation–observation (P&O) is the used MPPT algorithm and three Sliding Mode Controllers (SMC) are used to regulate the DC voltage of the PV and the current d and q components of the active filter using the PQ theory. With a SMC, no exact knowledge of the model parameters is required and it offers good behavior against unmodeled dynamics, insensitivity to parameter variations and good rejection of external disturbances. The space vector pulse wide modulation (SVPWM) of 7 and 5 segments is implemented in order to check the efficiency and grid current ripple. Several experimental tests have been carried in different conditions, concluding that the presented system provides an efficient maximum power tracking and a good power filter characteristic.The authors are very grateful to the UPV/EHU by its support through the project PPGA18/04, to the Basque Government by its support through the project ETORTEK KK-2017/00033 and to the Gipuzkoako Foru Aldundia by its support through the project Etorkizuna Eraikiz 2019

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    DISCRETE TIME QUASI-SLIDING MODE-BASED CONTROL OF LCL GRID INVERTERS

    Get PDF
    Application of a discrete time (DT) sliding mode controller (SMC) in the control structure of the primary controller of a three-phase LCL grid inverter is presented. The design of the inverter side current control loop is performed using a DT linear model of the grid inverter with LCL filter at output terminals. The DT quasi-sliding mode control was used due to its robustness to external and parametric disturbances. Additionally, in order to improve disturbance compensation, a disturbance compensator is also implemented. Also, a specific anti-windup mechanism has been implemented in the structure of the controller to prevent large overshoots in the inverter response in case of random disturbances of grid voltages, or sudden changes in the commanded power. The control of the grid inverter is realized in the reference system synchronized with the voltage of the power grid. The development of the digitally realized control subsystem is presented in detail, starting from theoretical considerations, through computer simulations to experimental tests. The experimental results confirm good static and dynamic performance
    corecore