14,860 research outputs found

    Structural Changes in Data Communication in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are an important technology for making distributed autonomous measures in hostile or inaccessible environments. Among the challenges they pose, the way data travel among them is a relevant issue since their structure is quite dynamic. The operational topology of such devices can often be described by complex networks. In this work, we assess the variation of measures commonly employed in the complex networks literature applied to wireless sensor networks. Four data communication strategies were considered: geometric, random, small-world, and scale-free models, along with the shortest path length measure. The sensitivity of this measure was analyzed with respect to the following perturbations: insertion and removal of nodes in the geometric strategy; and insertion, removal and rewiring of links in the other models. The assessment was performed using the normalized Kullback-Leibler divergence and Hellinger distance quantifiers, both deriving from the Information Theory framework. The results reveal that the shortest path length is sensitive to perturbations.Comment: 12 pages, 4 figures, Central European Journal of Physic

    CT-Mapper: Mapping Sparse Multimodal Cellular Trajectories using a Multilayer Transportation Network

    Get PDF
    Mobile phone data have recently become an attractive source of information about mobility behavior. Since cell phone data can be captured in a passive way for a large user population, they can be harnessed to collect well-sampled mobility information. In this paper, we propose CT-Mapper, an unsupervised algorithm that enables the mapping of mobile phone traces over a multimodal transport network. One of the main strengths of CT-Mapper is its capability to map noisy sparse cellular multimodal trajectories over a multilayer transportation network where the layers have different physical properties and not only to map trajectories associated with a single layer. Such a network is modeled by a large multilayer graph in which the nodes correspond to metro/train stations or road intersections and edges correspond to connections between them. The mapping problem is modeled by an unsupervised HMM where the observations correspond to sparse user mobile trajectories and the hidden states to the multilayer graph nodes. The HMM is unsupervised as the transition and emission probabilities are inferred using respectively the physical transportation properties and the information on the spatial coverage of antenna base stations. To evaluate CT-Mapper we collected cellular traces with their corresponding GPS trajectories for a group of volunteer users in Paris and vicinity (France). We show that CT-Mapper is able to accurately retrieve the real cell phone user paths despite the sparsity of the observed trace trajectories. Furthermore our transition probability model is up to 20% more accurate than other naive models.Comment: Under revision in Computer Communication Journa
    • …
    corecore