74 research outputs found

    Dynamic wireless mobile framework for distributed collaborative real-time information generation and control systems

    Get PDF
    Intelligent Transportation Systems (ITS) have only recently discovered the exciting possibilities in the nomadic and ubiquitous computing space to build a new generation of information systems by allowing the vehicle to act both as a carrier and consumer of wireless (and thus omnipresent) information. Wide deployment of such ITS systems may eventually allow for more dynamic and efficient transportation systems, which can contribute in several ways towards greater economic growth whilst respecting environmental sustainability. A great number of researchers have dedicated considerable time and resources to tackling traffic related issues by utilising the new wireless capabilities enabled by ITS; such initiatives cover a wide range of applications such as safety, knowledge sharing and infotainment. Indicative of the extent of such efforts is the plethora of research projects initiated by many national and multi-national organisations such as the EU Framework Programme for Research and Technological Development. To achieve their goals, proposed solutions from such organisations depend on the development and deployment of intelligent wireless mobile communication systems, where data dissemination issues make the prospect of efficient and effective communication a challenging proposition. Presently, Car-to-Car and Car-to-Infrastructure communications are two distinct avenues that make possible efficient and reliable delivery of messages via direct radio links in traffic areas. In all cases, high quality of communication performance is desirable for a communication system composed mostly of roaming participants; such a system needs to be dynamic, flexible and infrastructure-less. Consequently, Mobile Ad hoc Network (MANET)-based networks are a natural fit to ITS

    Joint ERCIM eMobility and MobiSense Workshop

    Get PDF

    A Self-Management Approach to Configuring Wireless Infrastructure Networks

    Get PDF
    Wireless infrastructure networks provide high-speed wireless connectivity over a small geographical area. The rapid proliferation of such networks makes their management not only more important but also more difficult. Denser network deployments lead to increased wireless contention and greater opportunities for RF interference, thereby decreasing performance. In the past, wireless site surveys and simplified wireless propagation models have been used to design and configure wireless systems. However, these techniques have been largely unsuccessful due to the dynamic nature of the wireless medium. More recently, there has been work on dynamically configurable systems that can adapt to changes in the surrounding environment. These systems improve on previous approaches but are still not adequate as their solutions make unrealistic assumptions about the operating environment. Nevertheless, even with these simplified models, the network design and configuration problems are inherently complex and require tradeoffs among competing requirements. In this thesis, we study a self-management system that can adjust system parameters dynamically. We present a system that does not impose any restrictions on the operating environment, is incrementally deployable, and also backwards compatible. In doing so, we propose, (i) framework for modeling system performance based on utility functions, (ii) novel approach to measuring the utility of a given set of configuration parameters, and (iii) optimization techniques for generating and refining system configurations to maximize utility. Although our utility-function framework is able to capture a variety of optimization metrics, in this study, we focus specifically on maximizing network throughput and minimizing inter-cell interference. Moreover, although many different techniques can be used for optimizing system performance, we focus only on transmit-power control and channel assignment. We evaluate our proposed architecture in simulation and show that our solution is not only feasible, but also provides significant improvements over existing approaches

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Network planning for the future railway communications

    Get PDF
    Los Sistemas Inteligentes de Transporte están cambiando la forma en que concebimos el futuro de la movilidad. En particular, los ferrocarriles están experimentando un proceso de transformación para modernizar el transporte público y las operaciones ferroviarias. Tecnologías como el 5G, la fibra óptica y la nube han surgido como catalizadores para digitalizar el ferrocarril proporcionando comunicaciones de alta velocidad y baja latencia. Este TFG se centra en la exploración de redes que permitan el control del tren y la transmisión de datos a bordo. El objetivo es planificar la infraestructura de red (dimensionamiento y asignación de recursos) necesaria para las futuras comunicaciones del sistema ferroviario de larga distancia de la Deutsche Bahn en Alemania. En este trabajo, proponemos una arquitectura de red que puede satisfacer los requisitos de rendimiento de las aplicaciones para trenes y pasajeros. Presentamos un método para la colocación de estaciones base 5G a lo largo de las vías del tren para garantizar el rendimiento necesario en el borde de la celda. Por último, presentamos el problema de colocación y asignación de centros de datos. El objetivo es encontrar el número necesario de centros de datos y su ubicación en la red, y asignarlos a cada estación de tren. Realizamos simulaciones en cuatro escenarios diferentes, en los que modificamos parámetros de entrada como la latencia máxima tolerada y el número máximo de centros de datos. Los resultados obtenidos muestran el compromiso entre la latencia alcanzada y el coste de la infraestructura.Els Sistemes Intel·ligents de Transport estan canviant la manera en què concebem el futur de la mobilitat. En particular, els ferrocarrils estan experimentant un procés de transformació per modernitzar el transport públic i les operacions ferroviàries. Tecnologies com el 5G, la fibra òptica i el núvol han sorgit com a catalitzadors per digitalitzar el ferrocarril proporcionant comunicacions d'alta velocitat i baixa latència. Aquest TFG se centra en l'exploració de xarxes que permetin el control dels trens i la transmissió de dades a bord. L'objectiu és planificar la infraestructura de xarxa (dimensionament i assignació de recursos) necessària per a les futures comunicacions del sistema ferroviari de llarga distància de la Deutsche Bahn a Alemanya. En aquest treball, proposem una arquitectura de xarxa que pot satisfer els requisits de rendiment de les aplicacions per a trens i passatgers. Presentem un mètode per a la col·locació d'estacions base 5G al llarg de les vies del tren per garantir el rendiment necessari a la vora de la cel·la. Per últim, presentem el problema de col·locació i assignació de centres de dades. L'objectiu és trobar el nombre necessari de centres de dades i la seva ubicació a la xarxa, i assignar-los a cada estació de tren. Realitzem simulacions en quatre escenaris diferents, on modifiquem paràmetres d'entrada com la latència màxima tolerada i el nombre màxim de centres de dades. Els resultats obtinguts mostren el compromís entre la latència assolida i el cost de la infraestructura.Smart Transportation Systems are changing the way we conceive the future of mobility. In particular, railways are undergoing a transformation process to modernize public transportation and rail operation. Technologies like 5G, optical fiber and the cloud have emerged as catalysts to digitalize the railway by providing high-speed and low-latency communications. This bachelor's thesis focuses on the exploration of networks enabling train control and on-board data communications. The goal is to plan the network infrastructure (dimensioning and resource allocation) needed for the future communications in the train mobility scenario for Deutsche Bahn's long-distance railway system in Germany. In this work, we propose a network architecture that can meet the performance requirements of train and passenger applications. We present an approach for 5G base station placement along the rail tracks to guarantee the necessary throughput at the cell edge. Finally, we introduce the data center placement and assignment problem. The objective is to find the required number of data centers and their location in the network, and to assign them to each train station. We perform simulations in four different scenarios, in which we modify input parameters such as the maximum tolerated latency and the maximum number of data centers. The obtained results show the trade-off between the achieved latency and the infrastructure cost

    Routing protocol for V2X communications for Urban VANETs

    Get PDF
    Intelligent Transportation Systems (ITSs) have been attracting tremendous attention in both academia and industry due to emerging applications that pave the way towards safer enjoyable journeys and inclusive digital partnerships. Undoubtedly, these ITS applications will demand robust routing protocols that not only focus on Inter-Vehicle Communications but also on providing fast, reliable, and secure access to the infrastructure. This thesis aims mainly to introduce the challenges of data packets routing through urban environment using the help of infrastructure. Broadcasting transmission is an essential operational technique that serves a broad range of applications which demand different restrictive QoS provisioning levels. Although broadcast communication has been investigated widely in highway vehicular networks, it is undoubtedly still a challenge in the urban environment due to the obstacles, such as high buildings. In this thesis, the Road-Topology based Broadcast Protocol (RTBP) is proposed, a distance and contention-based forwarding scheme suitable for both urban and highway vehicular environments. RTBP aims at assigning the highest forwarding priority to a vehicle, called a mobile repeater, having the greatest capability to send the packet in multiple directions. In this way, RTBP effectively reduces the number of competing vehicles and minimises the number of hops required to retransmit the broadcast packets around the intersections to cover the targeted area. By investigating the RTBP under realistic urban scenarios against well-known broadcast protocols, eMDR and TAF, that are dedicated to retransmitting the packets around intersections, the results showed the superiority of the RTBP in delivering the most critical warning information for 90% of vehicles with significantly lower delay of 58% and 70% compared to eMDR and TAF. The validation of this performance was clear when the increase in the number of vehicles. Secondly, a Fast and Reliable Hybrid routing (FRHR) protocol is introduced for efficient infrastructure access which is capable of handling efficient vehicle to vehicle communications. Interface to infrastructure is provided by carefully placed RoadSide Units (RSUs) which broadcast beacons in a multi-hop fashion in constrained areas. This enables vehicles proactively to maintain fresh minimum-delay routes to other RSUs while reactively discovering routes to nearby vehicles. The proposed protocol utilizes RSUs connected to the wired backbone network to relay packets toward remote vehicles. A vehicle selects an RSU to register with according to the expected mean delay instead of the device’s remoteness. The FRHR performance is evaluated against established infrastructure routing protocols, Trafroute, IGSR and RBVT-R that are dedicated to for urban environment, the results showed an improvement of 20% to 33% in terms of packet delivery ratio and lower latency particularly in sparse networks due to its rapid response to changes in network connectivity. Thirdly, focusing on increasing FRHR’s capability to provide more stable and durable routes to support the QoS requirements of expected wide-range ITS applications on the urban environment, a new route selection mechanism is introduced, aiming at selecting highly connected crossroads. The new protocol is called, Stable Infrastructure Routing Protocol (SIRP). Intensive simulation results showed that SIRP offers low end-to-end delay and high delivery ratio with varying traffic density, while resolving the problem of frequent link failures

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters
    corecore