12,881 research outputs found

    Dynamic Sender-Receiver Games

    Get PDF
    We consider a dynamic version of sender-receiver games, where the sequence of states follows an irreducible Markov chain observed by the sender. Under mild assumptions, we provide a simple characterization of the limit set of equilibrium payoffs, as players become very patient. Under these assumptions, the limit set depends on the Markov chain only through its invariant measure. The (limit) equilibrium payoffs are the feasible payoffs that satisfy an individual rationality condition for the receiver, and an incentive compatibility condition for the sender

    On the Structure of Equilibrium Strategies in Dynamic Gaussian Signaling Games

    Full text link
    This paper analyzes a finite horizon dynamic signaling game motivated by the well-known strategic information transmission problems in economics. The mathematical model involves information transmission between two agents, a sender who observes two Gaussian processes, state and bias, and a receiver who takes an action based on the received message from the sender. The players incur quadratic instantaneous costs as functions of the state, bias and action variables. Our particular focus is on the Stackelberg equilibrium, which corresponds to information disclosure and Bayesian persuasion problems in economics. Prior work solved the static game, and showed that the Stackelberg equilibrium is achieved by pure strategies that are linear functions of the state and the bias variables. The main focus of this work is on the dynamic (multi-stage) setting, where we show that the existence of a pure strategy Stackelberg equilibrium, within the set of linear strategies, depends on the problem parameters. Surprisingly, for most problem parameters, a pure linear strategy does not achieve the Stackelberg equilibrium which implies the existence of a trade-off between exploiting and revealing information, which was also encountered in several other asymmetric information games.Comment: will appear in IEEE Multi-Conference on Systems and Control 201

    Learning and Type Compatibility in Signaling Games

    Full text link
    Which equilibria will arise in signaling games depends on how the receiver interprets deviations from the path of play. We develop a micro-foundation for these off-path beliefs, and an associated equilibrium refinement, in a model where equilibrium arises through non-equilibrium learning by populations of patient and long-lived senders and receivers. In our model, young senders are uncertain about the prevailing distribution of play, so they rationally send out-of-equilibrium signals as experiments to learn about the behavior of the population of receivers. Differences in the payoff functions of the types of senders generate different incentives for these experiments. Using the Gittins index (Gittins, 1979), we characterize which sender types use each signal more often, leading to a constraint on the receiver's off-path beliefs based on "type compatibility" and hence a learning-based equilibrium selection

    Lying and Deception in Games

    Get PDF

    Reinforcement learning in signaling game

    Full text link
    We consider a signaling game originally introduced by Skyrms, which models how two interacting players learn to signal each other and thus create a common language. The first rigorous analysis was done by Argiento, Pemantle, Skyrms and Volkov (2009) with 2 states, 2 signals and 2 acts. We study the case of M_1 states, M_2 signals and M_1 acts for general M_1, M_2. We prove that the expected payoff increases in average and thus converges a.s., and that a limit bipartite graph emerges, such that no signal-state correspondence is associated to both a synonym and an informational bottleneck. Finally, we show that any graph correspondence with the above property is a limit configuration with positive probability.Comment: 6 figure
    • …
    corecore