357 research outputs found

    Adaptive Alert Management for Balancing Optimal Performance among Distributed CSOCs using Reinforcement Learning

    Get PDF
    Large organizations typically have Cybersecurity Operations Centers (CSOCs) distributed at multiple locations that are independently managed, and they have their own cybersecurity analyst workforce. Under normal operating conditions, the CSOC locations are ideally staffed such that the alerts generated from the sensors in a work-shift are thoroughly investigated by the scheduled analysts in a timely manner. Unfortunately, when adverse events such as increase in alert arrival rates or alert investigation rates occur, alerts have to wait for a longer duration for analyst investigation, which poses a direct risk to organizations. Hence, our research objective is to mitigate the impact of the adverse events by dynamically and autonomously re-allocating alerts to other location(s) such that the performances of all the CSOC locations remain balanced. This is achieved through the development of a novel centralized adaptive decision support system whose task is to re-allocate alerts from the affected locations to other locations. This re-allocation decision is non-trivial because the following must be determined: (1) timing of a re-allocation decision, (2) number of alerts to be re-allocated, and (3) selection of the locations to which the alerts must be distributed. The centralized decision-maker (henceforth referred to as agent) continuously monitors and controls the level of operational effectiveness-LOE (a quantified performance metric) of all the locations. The agent's decision-making framework is based on the principles of stochastic dynamic programming and is solved using reinforcement learning (RL). In the experiments, the RL approach is compared with both rule-based and load balancing strategies. By simulating real-world scenarios, learning the best decisions for the agent, and applying the decisions on sample realizations of the CSOC's daily operation, the results show that the RL agent outperforms both approaches by generating (near-) optimal decisions that maintain a balanced LOE among the CSOC locations. Furthermore, the scalability experiments highlight the practicality of adapting the method to a large number of CSOC locations

    Malware in the Future? Forecasting of Analyst Detection of Cyber Events

    Full text link
    There have been extensive efforts in government, academia, and industry to anticipate, forecast, and mitigate cyber attacks. A common approach is time-series forecasting of cyber attacks based on data from network telescopes, honeypots, and automated intrusion detection/prevention systems. This research has uncovered key insights such as systematicity in cyber attacks. Here, we propose an alternate perspective of this problem by performing forecasting of attacks that are analyst-detected and -verified occurrences of malware. We call these instances of malware cyber event data. Specifically, our dataset was analyst-detected incidents from a large operational Computer Security Service Provider (CSSP) for the U.S. Department of Defense, which rarely relies only on automated systems. Our data set consists of weekly counts of cyber events over approximately seven years. Since all cyber events were validated by analysts, our dataset is unlikely to have false positives which are often endemic in other sources of data. Further, the higher-quality data could be used for a number for resource allocation, estimation of security resources, and the development of effective risk-management strategies. We used a Bayesian State Space Model for forecasting and found that events one week ahead could be predicted. To quantify bursts, we used a Markov model. Our findings of systematicity in analyst-detected cyber attacks are consistent with previous work using other sources. The advanced information provided by a forecast may help with threat awareness by providing a probable value and range for future cyber events one week ahead. Other potential applications for cyber event forecasting include proactive allocation of resources and capabilities for cyber defense (e.g., analyst staffing and sensor configuration) in CSSPs. Enhanced threat awareness may improve cybersecurity.Comment: Revised version resubmitted to journa

    Military and Security Applications: Cybersecurity (Encyclopedia of Optimization, Third Edition)

    Get PDF
    The domain of cybersecurity is growing as part of broader military and security applications, and the capabilities and processes in this realm have qualities and characteristics that warrant using solution methods in mathematical optimization. Problems of interest may involve continuous or discrete variables, a convex or non-convex decision space, differing levels of uncertainty, and constrained or unconstrained frameworks. Cyberattacks, for example, can be modeled using hierarchical threat structures and may involve decision strategies from both an organization or individual and the adversary. Network traffic flow, intrusion detection and prevention systems, interconnected human-machine interfaces, and automated systems – these all require higher levels of complexity in mathematical optimization modeling and analysis. Attributes such as cyber resiliency, network adaptability, security capability, and information technology flexibility – these require the measurement of multiple characteristics, many of which may involve both quantitative and qualitative interpretations. And for nearly every organization that is invested in some cybersecurity practice, decisions must be made that involve the competing objectives of cost, risk, and performance. As such, mathematical optimization has been widely used and accepted to model important and complex decision problems, providing analytical evidence for helping drive decision outcomes in cybersecurity applications. In the paragraphs that follow, this chapter highlights some of the recent mathematical optimization research in the body of knowledge applied to the cybersecurity space. The subsequent literature discussed fits within a broader cybersecurity domain taxonomy considering the categories of analyze, collect and operate, investigate, operate and maintain, oversee and govern, protect and defend, and securely provision. Further, the paragraphs are structured around generalized mathematical optimization categories to provide a lens to summarize the existing literature, including uncertainty (stochastic programming, robust optimization, etc.), discrete (integer programming, multiobjective, etc.), continuous-unconstrained (nonlinear least squares, etc.), continuous-constrained (global optimization, etc.), and continuous-constrained (nonlinear programming, network optimization, linear programming, etc.). At the conclusion of this chapter, research implications and extensions are offered to the reader that desires to pursue further mathematical optimization research for cybersecurity within a broader military and security applications context

    Artificial Intelligence & Machine Learning in Finance: A literature review

    Get PDF
    In the 2020s, Artificial Intelligence (AI) has been increasingly becoming a dominant technology, and thanks to new computer technologies, Machine Learning (ML) has also experienced remarkable growth in recent years; however, Artificial Intelligence (AI) needs notable data scientist and engineers’ innovation to evolve. Hence, in this paper, we aim to infer the intellectual development of AI and ML in finance research, adopting a scoping review combined with an embedded review to pursue and scrutinize the services of these concepts. For a technical literature review, we goose-step the five stages of the scoping review methodology along with Donthu et al.’s (2021) bibliometric review method. This article highlights the trends in AI and ML applications (from 1989 to 2022) in the financial field of both developed and emerging countries. The main purpose is to emphasize the minutiae of several types of research that elucidate the employment of AI and ML in finance. The findings of our study are summarized and developed into seven fields: (1) Portfolio Management and Robo-Advisory, (2) Risk Management and Financial Distress (3), Financial Fraud Detection and Anti-money laundering, (4) Sentiment Analysis and Investor Behaviour, (5) Algorithmic Stock Market Prediction and High-frequency Trading, (6) Data Protection and Cybersecurity, (7) Big Data Analytics, Blockchain, FinTech. Further, we demonstrate in each field, how research in AI and ML enhances the current financial sector, as well as their contribution in terms of possibilities and solutions for myriad financial institutions and organizations. We conclude with a global map review of 110 documents per the seven fields of AI and ML application.   Keywords: Artificial Intelligence, Machine Learning, Finance, Scoping review, Casablanca Exchange Market. JEL Classification: C80 Paper type: Theoretical ResearchIn the 2020s, Artificial Intelligence (AI) has been increasingly becoming a dominant technology, and thanks to new computer technologies, Machine Learning (ML) has also experienced remarkable growth in recent years; however, Artificial Intelligence (AI) needs notable data scientist and engineers’ innovation to evolve. Hence, in this paper, we aim to infer the intellectual development of AI and ML in finance research, adopting a scoping review combined with an embedded review to pursue and scrutinize the services of these concepts. For a technical literature review, we goose-step the five stages of the scoping review methodology along with Donthu et al.’s (2021) bibliometric review method. This article highlights the trends in AI and ML applications (from 1989 to 2022) in the financial field of both developed and emerging countries. The main purpose is to emphasize the minutiae of several types of research that elucidate the employment of AI and ML in finance. The findings of our study are summarized and developed into seven fields: (1) Portfolio Management and Robo-Advisory, (2) Risk Management and Financial Distress (3), Financial Fraud Detection and Anti-money laundering, (4) Sentiment Analysis and Investor Behaviour, (5) Algorithmic Stock Market Prediction and High-frequency Trading, (6) Data Protection and Cybersecurity, (7) Big Data Analytics, Blockchain, FinTech. Further, we demonstrate in each field, how research in AI and ML enhances the current financial sector, as well as their contribution in terms of possibilities and solutions for myriad financial institutions and organizations. We conclude with a global map review of 110 documents per the seven fields of AI and ML application.   Keywords: Artificial Intelligence, Machine Learning, Finance, Scoping review, Casablanca Exchange Market. JEL Classification: C80 Paper type: Theoretical Researc

    Innovation in manufacturing through digital technologies and applications: Thoughts and Reflections on Industry 4.0

    Get PDF
    The rapid pace of developments in digital technologies offers many opportunities to increase the efficiency, flexibility and sophistication of manufacturing processes; including the potential for easier customisation, lower volumes and rapid changeover of products within the same manufacturing cell or line. A number of initiatives on this theme have been proposed around the world to support national industries under names such as Industry 4.0 (Industrie 4.0 in Germany, Made-in-China in China and Made Smarter in the UK). This book presents an overview of the state of art and upcoming developments in digital technologies pertaining to manufacturing. The starting point is an introduction on Industry 4.0 and its potential for enhancing the manufacturing process. Later on moving to the design of smart (that is digitally driven) business processes which are going to rely on sensing of all relevant parameters, gathering, storing and processing the data from these sensors, using computing power and intelligence at the most appropriate points in the digital workflow including application of edge computing and parallel processing. A key component of this workflow is the application of Artificial Intelligence and particularly techniques in Machine Learning to derive actionable information from this data; be it real-time automated responses such as actuating transducers or informing human operators to follow specified standard operating procedures or providing management data for operational and strategic planning. Further consideration also needs to be given to the properties and behaviours of particular machines that are controlled and materials that are transformed during the manufacturing process and this is sometimes referred to as Operational Technology (OT) as opposed to IT. The digital capture of these properties and behaviours can then be used to define so-called Cyber Physical Systems. Given the power of these digital technologies it is of paramount importance that they operate safely and are not vulnerable to malicious interference. Industry 4.0 brings unprecedented cybersecurity challenges to manufacturing and the overall industrial sector and the case is made here that new codes of practice are needed for the combined Information Technology and Operational Technology worlds, but with a framework that should be native to Industry 4.0. Current computing technologies are also able to go in other directions than supporting the digital ‘sense to action’ process described above. One of these is to use digital technologies to enhance the ability of the human operators who are still essential within the manufacturing process. One such technology, that has recently become accessible for widespread adoption, is Augmented Reality, providing operators with real-time additional information in situ with the machines that they interact with in their workspace in a hands-free mode. Finally, two linked chapters discuss the specific application of digital technologies to High Pressure Die Casting (HDPC) of Magnesium components. Optimizing the HPDC process is a key task for increasing productivity and reducing defective parts and the first chapter provides an overview of the HPDC process with attention to the most common defects and their sources. It does this by first looking at real-time process control mechanisms, understanding the various process variables and assessing their impact on the end product quality. This understanding drives the choice of sensing methods and the associated smart digital workflow to allow real-time control and mitigation of variation in the identified variables. Also, data from this workflow can be captured and used for the design of optimised dies and associated processes

    Operational Decision Making under Uncertainty: Inferential, Sequential, and Adversarial Approaches

    Get PDF
    Modern security threats are characterized by a stochastic, dynamic, partially observable, and ambiguous operational environment. This dissertation addresses such complex security threats using operations research techniques for decision making under uncertainty in operations planning, analysis, and assessment. First, this research develops a new method for robust queue inference with partially observable, stochastic arrival and departure times, motivated by cybersecurity and terrorism applications. In the dynamic setting, this work develops a new variant of Markov decision processes and an algorithm for robust information collection in dynamic, partially observable and ambiguous environments, with an application to a cybersecurity detection problem. In the adversarial setting, this work presents a new application of counterfactual regret minimization and robust optimization to a multi-domain cyber and air defense problem in a partially observable environment

    Compilation of Abstracts, June 2016

    Get PDF
    NPS Class of June 2016This quarter’s Compilation of Abstracts summarizes cutting-edge, security-related research conducted by NPS students and presented as theses, dissertations, and capstone reports. Each expands knowledge in its field.http://archive.org/details/compilationofabs109454990

    From Artificial Intelligence (AI) to Intelligence Augmentation (IA): Design Principles, Potential Risks, and Emerging Issues

    Get PDF
    We typically think of artificial intelligence (AI) as focusing on empowering machines with human capabilities so that they can function on their own, but, in truth, much of AI focuses on intelligence augmentation (IA), which is to augment human capabilities. We propose a framework for designing intelligent augmentation (IA) systems and it addresses six central questions about IA: why, what, who/whom, how, when, and where. To address the how aspect, we introduce four guiding principles: simplification, interpretability, human-centeredness, and ethics. The what aspect includes an IA architecture that goes beyond the direct interactions between humans and machines by introducing their indirect relationships through data and domain. The architecture also points to the directions for operationalizing the IA design simplification principle. We further identify some potential risks and emerging issues in IA design and development to suggest new questions for future IA research and to foster its positive impact on humanity

    Data Mining

    Get PDF
    The availability of big data due to computerization and automation has generated an urgent need for new techniques to analyze and convert big data into useful information and knowledge. Data mining is a promising and leading-edge technology for mining large volumes of data, looking for hidden information, and aiding knowledge discovery. It can be used for characterization, classification, discrimination, anomaly detection, association, clustering, trend or evolution prediction, and much more in fields such as science, medicine, economics, engineering, computers, and even business analytics. This book presents basic concepts, ideas, and research in data mining
    • …
    corecore