4,151 research outputs found

    Artificial Intelligence in Supply Chain Operations Planning: Collaboration and Digital Perspectives

    Full text link
    [EN] Digital transformation provide supply chains (SCs) with extensive accurate data that should be combined with analytical techniques to improve their management. Among these techniques Artificial Intelligence (AI) has proved their suitability, memory and ability to manage uncertain and constantly changing information. Despite the fact that a number of AI literature reviews exist, no comprehensive review of reviews for the SC operations planning has yet been conducted. This paper aims to provide a comprehensive review of AI literature reviews in a structured manner to gain insights into their evolution in incorporating new ICTs and collaboration. Results show that hybrization man-machine and collaboration and ethical aspects are understudied.This research has been funded by the project entitled NIOTOME (Ref. RTI2018-102020-B-I00) (MCI/AEI/FEDER, UE). The first author was supported by the Generalitat Valenciana (Conselleria de Educación, Investigación, Cultura y Deporte) under Grant ACIF/2019/021.Rodríguez-Sánchez, MDLÁ.; Alemany Díaz, MDM.; Boza, A.; Cuenca, L.; Ortiz Bas, Á. (2020). Artificial Intelligence in Supply Chain Operations Planning: Collaboration and Digital Perspectives. IFIP Advances in Information and Communication Technology. 598:365-378. https://doi.org/10.1007/978-3-030-62412-5_30S365378598Lezoche, M., Hernandez, J.E., Alemany, M.M.E., Díaz, E.A., Panetto, H., Kacprzyk, J.: Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Comput. Ind. 117, 103–187 (2020)Stock, J.R., Boyer, S.L.: Developing a consensus definition of supply chain management: a qualitative study. Int. J. Phys. Distrib. Logistics Manag. 39(8), 690–711 (2009)Min, H.: Artificial intelligence in supply chain management: theory and applications. Int. J. Logistics Res. Appl. 13(1), 13–39 (2010). https://doi.org/10.1080/13675560902736537Hariri, R.H., Fredericks, E.M., Bowers, K.M.: Uncertainty in big data analytics: survey, opportunities, and challenges. J. Big Data 6(1), 1–16 (2019). https://doi.org/10.1186/s40537-019-0206-3Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. Int. J. Inf. Manage. 48(2019), 63–71 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.01.021McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the dartmouth summer research project on artificial intelligence. AI Mag. 27(4), 12–14 (2006)Barr, A., Feigenbaum, E.A.: The Handbook of Artificial Intelligence, vol. 2. Heuristech: William Kaufmann, Pitman (1982)High-Level Expert Group on Artificial Intelligence, European Commission. A definition of AI: main capabilities and disciplines (2019)Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., De Felice, F.: Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability (Switzerland) 12(2) (2020). https://doi.org/10.3390/su12020492Cheng, L., Yu, T.: A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 43(6), 1928–1973 (2019). https://doi.org/10.1002/er.4333Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision-making in the era of big data. Evolution, challenges and research agenda. Int. J. Inf. Manag. 48, 63–71 (2019)Varshney, S., Jigyasu, R., Sharma, A., Mathew, L.: Review of various artificial intelligence techniques and its applications. IOP Conf. Ser. Mater. Sci. Eng. 594(1) (2019)Cheng, L., Yu, T.: A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 43, 1928–1973 (2019)Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16(15), 1699–1710 (2008). https://doi.org/10.1016/j.jclepro.2008.04.020Metaxiotis, K.S., Askounis, D., Psarras, J.: Expert Systems In Production Planning And Scheduling: A State-Of-The-Art Survey. J. Intell. Manuf. 13(4), 253–260 (2002). https://doi.org/10.1023/A:1016064126976Power, Y., Bahri, P.A.: Integration techniques in intelligent operational management: a review. Knowl. Based Syst. 18(2–3), 89–97 (2005). https://doi.org/10.1016/j.knosys.2004.04.009Shen, W., Hao, Q., Yoon, H.J., Norrie, D.H.: Applications of agent-based systems in intelligent manufacturing: an updated review. Adv. Eng. Inform. 20(4), 415–431 (2006). https://doi.org/10.1016/j.aei.2006.05.004Kobbacy, K.A.H., Vadera, S., Rasmy, M.H.: AI and OR in management of operations: history and trends. J. Oper. Res. Soc. 58(1), 10–28 (2007). https://doi.org/10.1057/palgrave.jors.2602132Zhang, W.J., Xie, S.Q.: Agent technology for collaborative process planning: a review. Int. J. Adv. Manuf. Technol. 32(3), 315–325 (2007). https://doi.org/10.1007/s00170-005-0345-xIbáñez, O., Cordón, O., Damas, S., Magdalena, L.: A review on the application of hybrid artificial intelligence systems to optimization problems in operations management. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 360–367. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02319-4_43Kobbacy, K.A.H., Vadera, S.: A survey of AI in operations management from 2005 to 2009. J. Manuf. Technol. Manag. 22(6), 706–733 (2011). https://doi.org/10.1108/17410381111149602Guo, Z.X., Wong, W.K., Leung, S.Y.S., Li, M.: Applications of artificial intelligence in the apparel industry: a review. Text. Res. J. 81(18), 1871–1892 (2011). https://doi.org/10.1177/0040517511411968Priore, P., Gómez, A., Pino, R., Rosillo, R.: Dynamic scheduling of manufacturing systems using machine learning: an updated review. Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM 28(1), 83–97 (2014). https://doi.org/10.1017/S0890060413000516Renzi, C., Leali, F., Cavazzuti, M., Andrisano, A.: A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems. Int. J. Adv. Manuf. Technol. 72(1–4), 403–418 (2014). https://doi.org/10.1007/s00170-014-5674-1Ngai, E.W.T., Peng, S., Alexander, P., Moon, K.K.L.: Decision support and intelligent systems in the textile and apparel supply chain: an academic review of research articles. Expert Syst. Appl. 41(1), 81–91 (2014). https://doi.org/10.1016/j.eswa.2013.07.013Rooh, U.A., Li, A., Ali, M.M.: Fuzzy, neural network and expert systems methodologies and applications - a review. J. Mob. Multimedia 11, 157–176 (2015)Bello, O., Teodoriu, C., Yaqoob, T., Oppelt, J., Holzmann, J., Obiwanne, A.: Application of artificial intelligence techniques in drilling system design and operations: a state of the art review and future research pathways. In: Society of Petroleum Engineers - SPE Nigeria Annual International Conference and Exhibition (2016)Arvitrida, N.I.: A review of agent-based modeling approach in the supply chain collaboration context. IOP Conf. Ser. Mater. Sci. Eng. 337(1) (2018). https://doi.org/10.1088/1757-899x/337/1/012015Zanon, L.G., Carpinetti, L.C.R.: Fuzzy cognitive maps and grey systems theory in the supply chain management context: a literature review and a research proposal. In: IEEE International Conference on Fuzzy Systems, July 2018, pp. 1–8 (2018). https://doi.org/10.1109/fuzz-ieee.2018.8491473Burggräf, P., Wagner, J., Koke, B.: Artificial intelligence in production management: a review of the current state of affairs and research trends in academia. In: 2018 International Conference on Information Management and Processing, ICIMP 2018, January 2018, pp. 82–88 (2018). https://doi.org/10.1109/icimp1.2018.8325846Diez-Olivan, A., Del Ser, J., Galar, D., Sierra, B.: Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0. Inf. Fusion 50, 92–111 (2019). https://doi.org/10.1016/j.inffus.2018.10.005Ni, D., Xiao, Z., Lim, M.K.: A systematic review of the research trends of machine learning in supply chain management. Int. J. Mach. Learn. Cybernet. 11(7), 1463–1482 (2019). https://doi.org/10.1007/s13042-019-01050-0Ning, C., You, F.: Optimization under uncertainty in the era of big data and deep learning: when machine learning meets mathematical programming. Comput. Chem. Eng. 125, 434–448 (2019). https://doi.org/10.1016/j.compchemeng.2019.03.034Okwu, M.O., Nwachukwu, A.N.: A review of fuzzy logic applications in petroleum exploration, production and distribution operations. J. Petrol. Explor. Prod. Technol. 9(2), 1555–1568 (2018). https://doi.org/10.1007/s13202-018-0560-2Weber, F.D., Schütte, R.: State-of-the-art and adoption of artificial intelligence in retailing. Digit. Policy Regul. Gov. 21(3), 264–279 (2019). https://doi.org/10.1108/DPRG-09-2018-0050Giri, C., Jain, S., Zeng, X., Bruniaux, P.: A detailed review of artificial intelligence applied in the fashion and apparel industry. IEEE Access 7, 95376–95396 (2019). https://doi.org/10.1109/ACCESS.2019.2928979Leo Kumar, S.P.: Knowledge-based expert system in manufacturing planning: State-of-the-art review. Int. J. Prod. Res. 57(15–16), 4766–4790 (2019). https://doi.org/10.1080/00207543.2018.1424372Barua, L., Zou, B., Zhou, Y.: Machine learning for international freight transportation management: a comprehensive review. Res. Transp. Bus. Manag. (2020). https://doi.org/10.1016/j.rtbm.2020.100453Chai, J., Ngai, E.W.T.: Decision-making techniques in supplier selection: recent accomplishments and what lies ahead. Expert Syst. Appl. 140 (2020). https://doi.org/10.1016/j.eswa.2019.112903Usuga Cadavid, J.P., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 31(6), 1531–1558 (2020). https://doi.org/10.1007/s10845-019-01531-7Ekramifard, A., Amintoosi, H., Seno, A.H., Dehghantanha, A., Parizi, R.M.: A systematic literature review of integration of blockchain and artificial intelligence. In: Choo, K.-K.R., Dehghantanha, A., Parizi, R.M. (eds.) Blockchain Cybersecurity, Trust and Privacy. AIS, vol. 79, pp. 147–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38181-3_8Vrbka, J., Rowland, Z.: Using artificial intelligence in company management. In: Ashmarina, S.I., Vochozka, M., Mantulenko, V.V. (eds.) ISCDTE 2019. LNNS, vol. 84, pp. 422–429. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27015-5_51Leslie, D.: Understanding artificial intelligence ethics and safety: a guide for the responsible design and implementation of AI systems in the public sector. The Alan Turing Institute (2019)Queiroz, M.M., Ivanov, D., Dolgui, A., et al.: Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Ann Oper Res (2020). https://doi.org/10.1007/s10479-020-03685-

    DPRL: Task offloading strategy based on differential privacy and reinforcement learning in edge computing

    Get PDF
    Mobile edge computing has been widely used in various IoT devices due to its excellent computing power and good interaction speed. Task offloading is the core of mobile edge computing. However, most of the existing task offloading strategies only focus on improving the unilateral performance of MEC, such as security, delay, and overhead. Therefore, focus on the security, delay and overhead of MEC, we propose a task offloading strategy based on differential privacy and reinforcement learning. This strategy optimizes the overhead required for the task offloading process while protecting user privacy. Specifically, before task offloading, differential privacy is used to interfere with the user’s location information to avoid malicious edge servers from stealing user privacy. Then, on the basis of ensuring user privacy and security, combined with the resource environment of the MEC network, reinforcement learning is used to select appropriate edge servers for task offloading. Simulation results show that our scheme improves the performance of MEC in many aspects, especially in security and resource consumption. Compared with the typical privacy protection scheme, the security is improved by 7%, and the resource consumption is reduced by 9% compared with the typical task offloading strategy.This work was supported in part by the Shandong Provincial Natural Science Foundation, China, under Grant ZR2020MF006; in part by the Industry-University Research Innovation Foundation of Ministry of Education of China under Grant 2021FNA01001 and Grant 2021FNA01005; in part by the Major Scientific and Technological Projects of the China National Petroleum Corp. (CNPC) under Grant ZD2019-183-006; and in part by the Open Foundation of State Key Laboratory of Integrated Services Networks, Xidian University, under Grant ISN23-09.Postprint (published version

    Reinforcement Learning Based Gasoline Blending Optimization: Achieving More Efficient Nonlinear Online Blending of Fuels

    Full text link
    The online optimization of gasoline blending benefits refinery economies. However, the nonlinear blending mechanism, the oil property fluctuations, and the blending model mismatch bring difficulties to the optimization. To solve the above issues, this paper proposes a novel online optimization method based on deep reinforcement learning algorithm (DRL). The Markov decision process (MDP) expression are given considering a practical gasoline blending system. Then, the environment simulator of gasoline blending process is established based on the MDP expression and the one-year measurement data of a real-world refinery. The soft actor-critic (SAC) DRL algorithm is applied to improve the DRL agent policy by using the data obtained from the interaction between DRL agent and environment simulator. Compared with a traditional method, the proposed method has better economic performance. Meanwhile, it is more robust under property fluctuations and component oil switching. Furthermore, the proposed method maintains performance by automatically adapting to system drift.Comment: 30 pages,13 figure

    VNE solution for network differentiated QoS and security requirements: from the perspective of deep reinforcement learning

    Get PDF
    The rapid development and deployment of network services has brought a series of challenges to researchers. On the one hand, the needs of Internet end users/applications reflect the characteristics of travel alienation, and they pursue different perspectives of service quality. On the other hand, with the explosive growth of information in the era of big data, a lot of private information is stored in the network. End users/applications naturally start to pay attention to network security. In order to solve the requirements of differentiated quality of service (QoS) and security, this paper proposes a virtual network embedding (VNE) algorithm based on deep reinforcement learning (DRL), aiming at the CPU, bandwidth, delay and security attributes of substrate network. DRL agent is trained in the network environment constructed by the above attributes. The purpose is to deduce the mapping probability of each substrate node and map the virtual node according to this probability. Finally, the breadth first strategy (BFS) is used to map the virtual links. In the experimental stage, the algorithm based on DRL is compared with other representative algorithms in three aspects: long term average revenue, long term revenue consumption ratio and acceptance rate. The results show that the algorithm proposed in this paper has achieved good experimental results, which proves that the algorithm can be effectively applied to solve the end user/application differentiated QoS and security requirements
    corecore