11,144 research outputs found

    A review of approaches to supply chain communications: from manufacturing to construction

    Get PDF
    With the increasing importance of computer-based communication technologies, communication networks are becoming crucial in supply chain management. Given the objectives of the supply chain: to have the right products in the right quantities, at the right place, at the right moment and at minimal cost, supply chain management is situated at the intersection of different professional sectors. This is particularly the case in construction, since building needs for its fabrication the incorporation of a number of industrial products. This paper provides a review of the main approaches to supply chain communications as used mainly in manufacturing industries. The paper analyses the extent to which these have been applied to construction. It also reviews the on-going developments and research activities in this domain

    Computational Frameworks for Multi-Robot Cooperative 3D Printing and Planning

    Get PDF
    This dissertation proposes a novel cooperative 3D printing (C3DP) approach for multi-robot additive manufacturing (AM) and presents scheduling and planning strategies that enable multi-robot cooperation in the manufacturing environment. C3DP is the first step towards achieving the overarching goal of swarm manufacturing (SM). SM is a paradigm for distributed manufacturing that envisions networks of micro-factories, each of which employs thousands of mobile robots that can manufacture different products on demand. SM breaks down the complicated supply chain used to deliver a product from a large production facility from one part of the world to another. Instead, it establishes a network of geographically distributed micro-factories that can manufacture the product at a smaller scale without increasing the cost. In C3DP, many printhead-carrying mobile robots work together to print a single part cooperatively. While it holds the promise to mitigate issues associated with gantry-based 3D printers, such as lack of scalability in print size and print speed, its realization is challenging because existing studies in the relevant literature do not address the fundamental issues in C3DP that stem from the amalgamation of the mobile nature of the robots, and continuous nature of the manufacturing tasks. To address this challenge, this dissertation asks two fundamental research questions: RQ1) How can the traditional 3D printing process be transformed to enable multi-robot cooperative AM? RQ2) How can cooperative manufacturing planning be realized in the presence of inherent uncertainties in AM and constraints that are dynamic in both space and time? To answer RQ1, we discretize the process of 3D printing into multiple stages. These stages include chunking (dividing a part into smaller chunks), scheduling (assigning chunks to robots and generating print sequences), and path and motion planning. To test the viability of the approach, we conducted a study on the tensile strength of chunk-based parts to examine their mechanical integrity. The study demonstrates that the chunk-based part can be as strong as the conventionally 3D-printed part. Next, we present different computational frameworks to address scheduling issues in C3DP. These include the development of 1) the world-first working strategy for C3DP, 2) a framework for automatic print schedule generation, evaluation, and validation, and 3) a resource-constrained scheduling approach for C3DP that uses a meta-heuristic approach such as a modified Genetic Algorithm (MGA) and a new algorithm that uses a constraint-satisficing approach to obtain collision-free print schedules for C3DP. To answer RQ2, a multi-robot decentralized approach based on a simple set of rules is used to plan for C3DP. The approach is resilient to uncertainties such as variation in printing times and can even outperform the centralized approach that uses MGA with a conflict-based search for large-scale problems. By answering these two fundamental questions, the central objective of the research project to establish computational frameworks to enable multi-robot cooperative manufacturing was achieved. The search for answers to the RQs led to the development of novel concepts that can be used not only in C3DP, but many other manufacturing tasks, in general, requiring cooperation among multiple robots

    Proceedings of the third International Workshop of the IFIP WG5.7

    Get PDF
    Contents of the papers presented at the international workshop deal with the wide variety of new and computer-based techniques for production planning and control that has become available to the scientific and industrial world in the past few years: formal modeling techniques, artificial neural networks, autonomous agent theory, genetic algorithms, chaos theory, fuzzy logic, simulated annealing, tabu search, simulation and so on. The approach, while being scientifically rigorous, is focused on the applicability to industrial environment

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Best matching processes in distributed systems

    Get PDF
    The growing complexity and dynamic behavior of modern manufacturing and service industries along with competitive and globalized markets have gradually transformed traditional centralized systems into distributed networks of e- (electronic) Systems. Emerging examples include e-Factories, virtual enterprises, smart farms, automated warehouses, and intelligent transportation systems. These (and similar) distributed systems, regardless of context and application, have a property in common: They all involve certain types of interactions (collaborative, competitive, or both) among their distributed individuals—from clusters of passive sensors and machines to complex networks of computers, intelligent robots, humans, and enterprises. Having this common property, such systems may encounter common challenges in terms of suboptimal interactions and thus poor performance, caused by potential mismatch between individuals. For example, mismatched subassembly parts, vehicles—routes, suppliers—retailers, employees—departments, and products—automated guided vehicles—storage locations may lead to low-quality products, congested roads, unstable supply networks, conflicts, and low service level, respectively. This research refers to this problem as best matching, and investigates it as a major design principle of CCT, the Collaborative Control Theory. The original contribution of this research is to elaborate on the fundamentals of best matching in distributed and collaborative systems, by providing general frameworks for (1) Systematic analysis, inclusive taxonomy, analogical and structural comparison between different matching processes; (2) Specification and formulation of problems, and development of algorithms and protocols for best matching; (3) Validation of the models, algorithms, and protocols through extensive numerical experiments and case studies. The first goal is addressed by investigating matching problems in distributed production, manufacturing, supply, and service systems based on a recently developed reference model, the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems are then formulated as mixed-integer programs. Due to the computational complexity of matching problems, various optimization algorithms are developed for solving different problem instances, including modified genetic algorithms, tabu search, and neighbourhood search heuristics. The dynamic and collaborative/competitive behaviors of matching processes in distributed settings are also formulated and examined through various collaboration, best matching, and task administration protocols. In line with the third goal, four case studies are conducted on various manufacturing, supply, and service systems to highlight the impact of best matching on their operational performance, including service level, utilization, stability, and cost-effectiveness, and validate the computational merits of the developed solution methodologies

    Collaborative and adaptive supply chain planning

    Get PDF
    Dans le contexte industriel d'aujourd'hui, la compétitivité est fortement liée à la performance de la chaîne d'approvisionnement. En d'autres termes, il est essentiel que les unités d'affaires de la chaîne collaborent pour coordonner efficacement leurs activités de production, de façon a produire et livrer les produits à temps, à un coût raisonnable. Pour atteindre cet objectif, nous croyons qu'il est nécessaire que les entreprises adaptent leurs stratégies de planification, que nous appelons comportements, aux différentes situations auxquelles elles font face. En ayant une connaissance de l'impact de leurs comportements de planification sur la performance de la chaîne d'approvisionnement, les entreprises peuvent alors adapter leur comportement plutôt que d'utiliser toujours le même. Cette thèse de doctorat porte sur l'adaptation des comportements de planification des membres d'une même chaîne d'approvisionnement. Chaque membre pouvant choisir un comportement différent et toutes les combinaisons de ces comportements ayant potentiellement un impact sur la performance globale, il est difficile de connaître à l'avance l'ensemble des comportements à adopter pour améliorer cette performance. Il devient alors intéressant de simuler les différentes combinaisons de comportements dans différentes situations et d'évaluer les performances de chacun. Pour permettre l'utilisation de plusieurs comportements dans différentes situations, en utilisant la technologie à base d'agents, nous avons conçu un modèle d'agent à comportements multiples qui a la capacité d'adapter son comportement de planification selon la situation. Les agents planificateurs ont alors la possibilité de se coordonner de façon collaborative pour améliorer leur performance collective. En modélisant les unités d'affaires par des agents, nous avons simulé avec la plateforme de planification à base d'agents de FORAC des agents utilisant différents comportements de planification dits de réaction et de négociation. Cette plateforme, développée par le consortium de recherche FORAC de l'Université Laval, permet de simuler des décisions de planification et de planifier les opérations de la chaîne d'approvisionnement. Ces comportements de planification sont des métaheurisciques organisationnelles qui permettent aux agents de générer des plans de production différents. La simulation est basée sur un cas illustrant la chaîne d'approvisionnement de l'industrie du bois d'œuvre. Les résultats obtenus par l'utilisation de multiples comportements de réaction et de négociation montrent que les systèmes de planification avancée peuvent tirer avantage de disposer de plusieurs comportements de planification, en raIson du contexte dynamique des chaînes d'approvisionnement. La pertinence des résultats de cette thèse dépend de la prémisse que les entreprises qui adapteront leurs comportements de planification aux autres et à leur environnement auront un avantage concurrentiel important sur leurs adversaires

    NASA space station automation: AI-based technology review. Executive summary

    Get PDF
    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics

    The SEC-system : reuse support for scheduling system development

    Get PDF
    Recently, in a joint cooperation of Stichting VNA, SAL Apotheken, the Faculty of Management and Organization, and the University Centre for Pharmacy, University of Groningen in the Netherlands, a Ph.D-study started regarding Apot(he)ek, Organization and Management (APOM). The APOM-project deals with the structuring and steering of pharmacy organization. The manageability of the internal pharmacy organization, and the manageability of the direct environment of pharmacy organization is the subject matter. The theoretical background of the APOM-project is described. A literature study was made to find mixes of objectives. Three mixes of objectives in pharmacy organization are postulated; the product mix, the process mix, and the customer mix. The typology will be used as a basic starting point for the empirical study in the next phase of the APOM-project.
    • …
    corecore