19,196 research outputs found

    Optimistic Parallel State-Machine Replication

    Full text link
    State-machine replication, a fundamental approach to fault tolerance, requires replicas to execute commands deterministically, which usually results in sequential execution of commands. Sequential execution limits performance and underuses servers, which are increasingly parallel (i.e., multicore). To narrow the gap between state-machine replication requirements and the characteristics of modern servers, researchers have recently come up with alternative execution models. This paper surveys existing approaches to parallel state-machine replication and proposes a novel optimistic protocol that inherits the scalable features of previous techniques. Using a replicated B+-tree service, we demonstrate in the paper that our protocol outperforms the most efficient techniques by a factor of 2.4 times

    Building global and scalable systems with atomic multicast

    Get PDF
    The rise of worldwide Internet-scale services demands large distributed systems. Indeed, when handling several millions of users, it is common to operate thousands of servers spread across the globe. Here, replication plays a central role, as it contributes to improve the user experience by hiding failures and by providing acceptable latency. In this thesis, we claim that atomic multicast, with strong and well-defined properties, is the appropriate abstraction to efficiently design and implement globally scalable distributed systems. Internet-scale services rely on data partitioning and replication to provide scalable performance and high availability. Moreover, to reduce user-perceived response times and tolerate disasters (i.e., the failure of a whole datacenter), services are increasingly becoming geographically distributed. Data partitioning and replication, combined with local and geographical distribution, introduce daunting challenges, including the need to carefully order requests among replicas and partitions. One way to tackle this problem is to use group communication primitives that encapsulate order requirements. While replication is a common technique used to design such reliable distributed systems, to cope with the requirements of modern cloud based ``always-on'' applications, replication protocols must additionally allow for throughput scalability and dynamic reconfiguration, that is, on-demand replacement or provisioning of system resources. We propose a dynamic atomic multicast protocol which fulfills these requirements. It allows to dynamically add and remove resources to an online replicated state machine and to recover crashed processes. Major efforts have been spent in recent years to improve the performance, scalability and reliability of distributed systems. In order to hide the complexity of designing distributed applications, many proposals provide efficient high-level communication abstractions. Since the implementation of a production-ready system based on this abstraction is still a major task, we further propose to expose our protocol to developers in the form of distributed data structures. B-trees for example, are commonly used in different kinds of applications, including database indexes or file systems. Providing a distributed, fault-tolerant and scalable data structure would help developers to integrate their applications in a distribution transparent manner. This work describes how to build reliable and scalable distributed systems based on atomic multicast and demonstrates their capabilities by an implementation of a distributed ordered map that supports dynamic re-partitioning and fast recovery. To substantiate our claim, we ported an existing SQL database atop of our distributed lock-free data structure. Here, replication plays a central role, as it contributes to improve the user experience by hiding failures and by providing acceptable latency. In this thesis, we claim that atomic multicast, with strong and well-defined properties, is the appropriate abstraction to efficiently design and implement globally scalable distributed systems. Internet-scale services rely on data partitioning and replication to provide scalable performance and high availability. Moreover, to reduce user-perceived response times and tolerate disasters (i.e., the failure of a whole datacenter), services are increasingly becoming geographically distributed. Data partitioning and replication, combined with local and geographical distribution, introduce daunting challenges, including the need to carefully order requests among replicas and partitions. One way to tackle this problem is to use group communication primitives that encapsulate order requirements. While replication is a common technique used to design such reliable distributed systems, to cope with the requirements of modern cloud based ``always-on'' applications, replication protocols must additionally allow for throughput scalability and dynamic reconfiguration, that is, on-demand replacement or provisioning of system resources. We propose a dynamic atomic multicast protocol which fulfills these requirements. It allows to dynamically add and remove resources to an online replicated state machine and to recover crashed processes. Major efforts have been spent in recent years to improve the performance, scalability and reliability of distributed systems. In order to hide the complexity of designing distributed applications, many proposals provide efficient high-level communication abstractions. Since the implementation of a production-ready system based on this abstraction is still a major task, we further propose to expose our protocol to developers in the form of distributed data structures. B- trees for example, are commonly used in different kinds of applications, including database indexes or file systems. Providing a distributed, fault-tolerant and scalable data structure would help developers to integrate their applications in a distribution transparent manner. This work describes how to build reliable and scalable distributed systems based on atomic multicast and demonstrates their capabilities by an implementation of a distributed ordered map that supports dynamic re-partitioning and fast recovery. To substantiate our claim, we ported an existing SQL database atop of our distributed lock-free data structure

    ElasTraS: An Elastic Transactional Data Store in the Cloud

    Full text link
    Over the last couple of years, "Cloud Computing" or "Elastic Computing" has emerged as a compelling and successful paradigm for internet scale computing. One of the major contributing factors to this success is the elasticity of resources. In spite of the elasticity provided by the infrastructure and the scalable design of the applications, the elephant (or the underlying database), which drives most of these web-based applications, is not very elastic and scalable, and hence limits scalability. In this paper, we propose ElasTraS which addresses this issue of scalability and elasticity of the data store in a cloud computing environment to leverage from the elastic nature of the underlying infrastructure, while providing scalable transactional data access. This paper aims at providing the design of a system in progress, highlighting the major design choices, analyzing the different guarantees provided by the system, and identifying several important challenges for the research community striving for computing in the cloud.Comment: 5 Pages, In Proc. of USENIX HotCloud 200

    Integrating Scale Out and Fault Tolerance in Stream Processing using Operator State Management

    Get PDF
    As users of big data applications expect fresh results, we witness a new breed of stream processing systems (SPS) that are designed to scale to large numbers of cloud-hosted machines. Such systems face new challenges: (i) to benefit from the pay-as-you-go model of cloud computing, they must scale out on demand, acquiring additional virtual machines (VMs) and parallelising operators when the workload increases; (ii) failures are common with deployments on hundreds of VMs - systems must be fault-tolerant with fast recovery times, yet low per-machine overheads. An open question is how to achieve these two goals when stream queries include stateful operators, which must be scaled out and recovered without affecting query results. Our key idea is to expose internal operator state explicitly to the SPS through a set of state management primitives. Based on them, we describe an integrated approach for dynamic scale out and recovery of stateful operators. Externalised operator state is checkpointed periodically by the SPS and backed up to upstream VMs. The SPS identifies individual operator bottlenecks and automatically scales them out by allocating new VMs and partitioning the check-pointed state. At any point, failed operators are recovered by restoring checkpointed state on a new VM and replaying unprocessed tuples. We evaluate this approach with the Linear Road Benchmark on the Amazon EC2 cloud platform and show that it can scale automatically to a load factor of L=350 with 50 VMs, while recovering quickly from failures. Copyright © 2013 ACM

    H2O: An Autonomic, Resource-Aware Distributed Database System

    Get PDF
    This paper presents the design of an autonomic, resource-aware distributed database which enables data to be backed up and shared without complex manual administration. The database, H2O, is designed to make use of unused resources on workstation machines. Creating and maintaining highly-available, replicated database systems can be difficult for untrained users, and costly for IT departments. H2O reduces the need for manual administration by autonomically replicating data and load-balancing across machines in an enterprise. Provisioning hardware to run a database system can be unnecessarily costly as most organizations already possess large quantities of idle resources in workstation machines. H2O is designed to utilize this unused capacity by using resource availability information to place data and plan queries over workstation machines that are already being used for other tasks. This paper discusses the requirements for such a system and presents the design and implementation of H2O.Comment: Presented at SICSA PhD Conference 2010 (http://www.sicsaconf.org/
    • …
    corecore