7 research outputs found

    Lightpath routing with survivability requirements in WDM optical mesh networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Network protection with guaranteed recovery times using recovery domains

    Get PDF
    We consider the problem of providing network protection that guarantees the maximum amount of time that flow can be interrupted after a failure. This is in contrast to schemes that offer no recovery time guarantees, such as IP rerouting, or the prevalent local recovery scheme of Fast ReRoute, which often over-provisions resources to meet recovery time constraints. To meet these recovery time guarantees, we provide a novel and flexible solution by partitioning the network into failure-independent “recovery domains”, where within each domain, the maximum amount of time to recover from a failure is guaranteed. We show the recovery domain problem to be NP-Hard, and develop an optimal solution in the form of an MILP for both the case when backup capacity can and cannot be shared. This provides protection with guaranteed recovery times using up to 45% less protection resources than local recovery. We demonstrate that the network-wide optimal recovery domain solution can be decomposed into a set of easier to solve subproblems. This allows for the development of flexible and efficient solutions, including an optimal algorithm using Lagrangian relaxation, which simulations show to converge rapidly to an optimal solution. Additionally, an algorithm is developed for when backup sharing is allowed. For dynamic arrivals, this algorithm performs better than the solution that tries to greedily optimize for each incoming demand.National Science Foundation (U.S.) (NSF grant CNS-1017800)National Science Foundation (U.S.) (grant CNS-0830961)United States. Defense Threat Reduction Agency (grant HDTRA-09-1-005)United States. Defense Threat Reduction Agency (grant HDTRA1-07-1-0004)United States. Air Force (Air Force contract # FA8721-05-C-0002

    Integrated dynamic routing of restorable connections in IP/WDM networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Multi-layer survivability in IP-over-WDM networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Network protection with service guarantees

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from department-submitted PDF version of thesis.Includes bibliographical references (p. 167-174).With the increasing importance of communication networks comes an increasing need to protect against network failures. Traditional network protection has been an "all-or-nothing" approach: after any failure, all network traffic is restored. Due to the cost of providing this full protection, many network operators opt to not provide protection whatsoever. This is especially true in wireless networks, where reserving scarce resources for protection is often too costly. Furthermore, network protection often does not come with guarantees on recovery time, which becomes increasingly important with the widespread use of real-time applications that cannot tolerate long disruptions. This thesis investigates providing protection for mesh networks under a variety of service guarantees, offering significant resource savings over traditional protection schemes. First, we develop a network protection scheme that guarantees a quantifiable minimum grade of service upon a failure within the network. Our scheme guarantees that a fraction q of each demand remains after any single-link failure, at a fraction of the resources required for full protection. We develop both a linear program and algorithms to find the minimum-cost capacity allocation to meet both demand and protection requirements. Subsequently, we develop a novel network protection scheme that provides guarantees on both the fraction of time a flow has full connectivity, as well as a quantifiable minimum grade of service during downtimes. In particular, a flow can be below the full demand for at most a maximum fraction of time; then, it must still support at least a fraction q of the full demand. This is in contrast to current protection schemes that offer either availability-guarantees with no bandwidth guarantees during the down-time, or full protection schemes that offer 100% availability after a single link failure. We show that the multiple availability guaranteed problem is NP-Hard, and develop solutions using both a mixed integer linear program and heuristic algorithms. Next, we consider the problem of providing resource-efficient network protection that guarantees the maximum amount of time that flow can be interrupted after a failure. This is in contrast to schemes that offer no recovery time guarantees, such as IP rerouting, or the prevalent local recovery scheme of Fast ReRoute, which often over-provisions resources to meet recovery time constraints. To meet these recovery time guarantees, we provide a novel and flexible solution by partitioning the network into failure-independent "recovery domains", where within each domain, the maximum amount of time to recover from a failure is guaranteed. Finally, we study the problem of providing protection against failures in wireless networks subject to interference constraints. Typically, protection in wired networks is provided through the provisioning of backup paths. This approach has not been previously considered in the wireless setting due to the prohibitive cost of backup capacity. However, we show that in the presence of interference, protection can often be provided with no loss in throughput. This is due to the fact that after a failure, links that previously interfered with the failed link can be activated, thus leading to a "recapturing" of some of the lost capacity. We provide both an ILP formulation for the optimal solution, as well as algorithms that perform close to optimal.by Gregory Kuperman.Ph.D

    Pour un mécanisme de protection différenciée unique contre la gestion ainsi que les pannes : DiffServ*

    Get PDF
    L'avènement de l'Internet multiservice met fin à l'ère du réseautage de nature meilleur effort. Cette nouvelle caractéristique est très souhaitable et prometteuse sur plusieurs plans mais elle reste sujette à la capacité du réseau de protéger chaque catégorie de trafic selon sa priorité et ses exigences en qualité de service. Quand le réseau est déployé sur une infrastructure optique, une des préoccupations des plus importantes est sa capacité de survie et le maintien d'un service adéquat à toutes les applications suite à une panne physique. Nous savons qu'une simple coupure de fibre provoque des pertes énormes en capacité de transmission et si laissée sans surveillance, elle peut causer des dégradations majeures dans la qualité de service perçue par les usagers du réseau. Bien qu'il existe déjà des mécanismes de protection physique qui sont conçus spécifiquement pour remédier à de telles situations, ces options sont généralement très coûteuses et difficilement adaptable aux besoins variés de chaque classe de trafic d'un réseau multiserviceNous proposons alors un modèle innovateur de protection différenciée du trafic, DiffServ*, qui permet de répondre aux exigences particulières en qualité de service et de protection de chacune des classes de trafic et qui introduit une robustesse accrue et des économies importantes en matière d'utilisation de ressources d'un réseau IP/WDM. DiffServ* se distingue par l'utilisation combinée de l'architecture des services différenciées à la couche logique d'un réseau et de la technique d'agrégation de liens ou canaux disjoints à sa couche physiqueNotre modèle de protection différenciée du trafic en cas de pannes a été soumis à l'épreuve, nous avons utilisé la simulation pour étudier sa performance et nous l'avons comparé à un modèle de protection physique homologue, DiffProtect. Les résultats montrent que DiffServ* permet en moyenne de garantir une meilleure protection que DiffProtect en cas de pannes simples et multiples. DiffProtect n'est plus performant que dans certaines situations de pannes et de trafic très particulières. Une évaluation subséquente de la fiabilité d'un réseau qui utilise DiffServ*, une étude de coût de son déploiement et une étude de cas qui cible les réseaux MPLS-DiffServ TE confirment davantage la supériorité de DiffServ* par rapport à tout autre option de protection différenciée envisageableNous rappelons que DiffServ* se base sur les techniques de différenciation de service de la couche logique pour protéger le trafic en cas de pannes de composantes optiques. Ceci est inédit puisque ces mêmes techniques sont originalement conçues que pour protéger le trafic en cas de congestion dans la couche logique. Alors pour démontrer définitivement que DiffServ* est réalisable et fonctionnel nous réalisons une expérience de déploiement pratique de DiffServ* en laboratoire à l'aide d'équipements de communication réel. Malgré les divergences techniques entre la modélisation théorique de DiffServ* et de son implémentation, DiffServ* est démontré performant, fiable, économique et réalisable en pratiqueNous clôturons ce projet par une planification de déploiement ; cette dernière permet de généraliser le déploiement de DiffServ* à toute topologie IP/WDM et d'en dimensionner la couche logique. Notre procédure approche les situations qui requièrent la fiabilité spécifique de DiffProtect en offrant un modèle d'optimisation complet sur le déploiement de la protection MixProtect multicouche qui utilise DiffServ* et DiffProtect dans le même résea

    Dynamic routing of dependable connections with different QoP grades in WDM optical networks

    No full text
    10.1109/ISCC.2005.58Proceedings - IEEE Symposium on Computers and Communications532-53
    corecore