6,320 research outputs found

    Routing and Staffing when Servers are Strategic

    Get PDF
    Traditionally, research focusing on the design of routing and staffing policies for service systems has modeled servers as having fixed (possibly heterogeneous) service rates. However, service systems are generally staffed by people. Furthermore, people respond to workload incentives; that is, how hard a person works can depend both on how much work there is, and how the work is divided between the people responsible for it. In a service system, the routing and staffing policies control such workload incentives; and so the rate servers work will be impacted by the system's routing and staffing policies. This observation has consequences when modeling service system performance, and our objective is to investigate those consequences. We do this in the context of the M/M/N queue, which is the canonical model for large service systems. First, we present a model for "strategic" servers that choose their service rate in order to maximize a trade-off between an "effort cost", which captures the idea that servers exert more effort when working at a faster rate, and a "value of idleness", which assumes that servers value having idle time. Next, we characterize the symmetric Nash equilibrium service rate under any routing policy that routes based on the server idle time. We find that the system must operate in a quality-driven regime, in which servers have idle time, in order for an equilibrium to exist, which implies that the staffing must have a first-order term that strictly exceeds that of the common square-root staffing policy. Then, within the class of policies that admit an equilibrium, we (asymptotically) solve the problem of minimizing the total cost, when there are linear staffing costs and linear waiting costs. Finally, we end by exploring the question of whether routing policies that are based on the service rate, instead of the server idle time, can improve system performance.Comment: First submitted for journal publication in 2014; accepted for publication in Operations Research in 2016. Presented in select conferences throughout 201

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram

    Large-scale Join-Idle-Queue system with general service times

    Get PDF
    A parallel server system with nn identical servers is considered. The service time distribution has a finite mean 1/μ1/\mu, but otherwise is arbitrary. Arriving customers are be routed to one of the servers immediately upon arrival. Join-Idle-Queue routing algorithm is studied, under which an arriving customer is sent to an idle server, if such is available, and to a randomly uniformly chosen server, otherwise. We consider the asymptotic regime where n→∞n\to\infty and the customer input flow rate is λn\lambda n. Under the condition λ/μ<1/2\lambda/\mu<1/2, we prove that, as n→∞n\to\infty, the sequence of (appropriately scaled) stationary distributions concentrates at the natural equilibrium point, with the fraction of occupied servers being constant equal λ/μ\lambda/\mu. In particular, this implies that the steady-state probability of an arriving customer waiting for service vanishes.Comment: Revision. 11 page
    • …
    corecore