245,795 research outputs found

    Dynamic Hierarchical Cache Management for Cloud RAN and Multi- Access Edge Computing in 5G Networks

    Get PDF
    Cloud Radio Access Networks (CRAN) and Multi-Access Edge Computing (MEC) are two of the many emerging technologies that are proposed for 5G mobile networks. CRAN provides scalability, flexibility, and better resource utilization to support the dramatic increase of Internet of Things (IoT) and mobile devices. MEC aims to provide low latency, high bandwidth and real- time access to radio networks. Cloud architecture is built on top of traditional Radio Access Networks (RAN) to bring the idea of CRAN and in MEC, cloud computing services are brought near users to improve the user’s experiences. A cache is added in both CRAN and MEC architectures to speed up the mobile network services. This research focuses on cache management of CRAN and MEC because there is a necessity to manage and utilize this limited cache resource efficiently. First, a new cache management algorithm, H-EXD-AHP (Hierarchical Exponential Decay and Analytical Hierarchy Process), is proposed to improve the existing EXD-AHP algorithm. Next, this paper designs three dynamic cache management algorithms and they are implemented on the proposed algorithm: H-EXD-AHP and an existing algorithm: H-PBPS (Hierarchical Probability Based Popularity Scoring). In these proposed designs, cache sizes of the different Service Level Agreement (SLA) users are adjusted dynamically to meet the guaranteed cache hit rate set for their corresponding SLA users. The minimum guarantee of cache hit rate is for our setting. Net neutrality, prioritized treatment will be in common practice. Finally, performance evaluation results show that these designs achieve the guaranteed cache hit rate for differentiated users according to their SLA

    How should I slice my network? A multi-service empirical evaluation of resource sharing efficiency

    Get PDF
    Proceeding of: MobiCom '18: The 24th Annual International Conference on Mobile Computing and Networking, New Delhi, India, October 29 - November 2, 2018By providing especially tailored instances of a virtual network,network slicing allows for a strong specialization of the offered services on the same shared infrastructure. Network slicing has profound implications on resource management, as it entails an inherent trade-off between: (i) the need for fully dedicated resources to support service customization, and (ii) the dynamic resource sharing among services to increase resource efficiency and cost-effectiveness of the system. In this paper, we provide a first investigation of this trade-off via an empirical study of resource management efficiency in network slicing. Building on substantial measurement data collected in an operational mobile network (i) we quantify the efficiency gap introduced by non-reconfigurable allocation strategies of different kinds of resources, from radio access to the core of the network, and (ii) we quantify the advantages of their dynamic orchestration at different timescales. Our results provide insights on the achievable efficiency of network slicing architectures, their dimensioning, and their interplay with resource management algorithms.We would like to thank the shepherd and reviewers for their valuable comments and feedback. The work of University Carlos III of Madrid was supported by the H2020 5G-MoNArch project (grant agreement no. 761445), and the work of NEC Europe Ltd. was supported by the H2020 5GTransformer project (grant agreement no. 761536)

    A cluster based object oriented service discovery and advertisement proposed for MANETs

    Get PDF
    A Resource management is one of the important services that are offered in any network. Mobile ad hoc network (MANET) is a gathering of mobile wireless nodes that are located in dynamic network with unnecessary using pre-existing infrastructure all mobile nodes which are free for any movement to any side and they are less network. This network is going ahead to zero configurations that would create some problems in mobile computing. There are variety limitations in Ad hoc network that need to be considered among design and implementation for it. This paper is concerned with the hybridization of object oriented method and agent to manage computing in mobile Ad hoc networks. The proposed approach causes the network load and latency to be decreased. Since the amount of communication messages is a vital issue in MANETs, also a strategy is introduced based on moving service advertisement from application layer to routing layer to reduction of network traffic. It's expected that the proposed resource management method reduces the latency, overhead and energy consumption in MANET

    A QoS-enable solution for mobile environments

    Get PDF
    This paper addresses the problem of designing a suitable Quality of Service (QoS) solution for mobile environments. The proposed solution deploys a dynamic QoS provisioning scheme able to deal with service protection during node mobility within a local domain, presenting extensions to deal with global mobility. The dynamic QoS provisioning encompasses a QoS architecture that uses explicit and implicit setup mechanisms to request resources from the network for the purpose of supporting control plane functions and optimizing resource allocation. Abstract--- For efficient resource allocation, the resource and mobility management schemes have been coupled resulting in a QoS/Mobility aware network architecture able to react proactively to mobility events. Both management schemes have been optimized to work together, in order to support seamless handovers for mobile users running real-time applications. Abstract--- The analysis of performance improvement and the model parametrization of the proposed solution have been evaluated using simulation. Simulation results show that the solution avoids network congestion and also the starvation of less priority DiffServ classes. Moreover, the results also show that bandwidth utilization for priority classes is levered and that the QoS offered to Mobile Node's (MN's) applications, within each DiffServ class, is maintained in spite of MN mobility. Abstract--- The proposed model is simple, easy to implement and takes into account the mobile Internet requirements. Simulation results show that this new methodology is effective and able to provide QoS services adapted to application requests

    A micro-mobility solution for supporting QoS in global mobility

    Get PDF
    Today, users want to have simultaneously mobility, Quality of Service (QoS) and be always connected to Internet. Therefore, this paper proposes a QoS micro-mobility solution able to provide QoS support for global mobility. The solution comprises enhancements in the mobility management of Mobile IPv6 (MIPv6) and in the resources management of Differentiated Services (DiffServ) QoS model. The mobility management of MIPv6 was extended with fast and local handovers to improve its efficiency in micro-mobility scenarios with frequent handovers. The DiffServ resource management has been extended with adaptive and dynamic QoS provisioning to improve resources utilization in mobile IP networks. Further, in order to improve resources utilization the mobility and QoS messages were coupled, providing a resource management able to, proactively, react to mobile events. The performance improvement of the proposed solution and the model parametrization was evaluated using a simulation model. Simulation results indicate that the solution avoids network congestion and starvation of less priority DiffServ classes. Moreover, the results also indicate that bandwidth utilization for priority classes increases and the QoS offered to MN's applications, in each DiffServ class, keeps up unchangeable with MN mobility.(undefined

    Location and resource management for quality of service provisioning in wireless/mobile networks

    Full text link
    Wireless communication has been seen unprecedented growth in recent years. As the wireless network migrates from 2G to 2.5G and 3G, more and more high-bandwidth services have to be provided to wireless users. However, existing radio resources are limited, thus quality-of-service (QoS) provisioning is extremely important for high performance networKing In this dissertation, we focus on two problems crucial for QoS provisioning in wireless networks. They are location and resource management. Our research is aimed to develop efficient location management and resource allocation techniques to provide qualitative services in the future generations of wireless/mobile networks. First, the hybrid location update method (HLU) is proposed based on both the moving distance and the moving direction of mobile terminals. The signaling cost for location management is analyzed using a 2D Markov walk model. The results of numerical studies for different mobility patterns show that the HLU scheme outperforms the methods employing either moving distance or moving direction. Next, a new dynamic location management scheme with personalized location areas is developed. It takes into account terminal\u27s mobility characteristics in different locations of the service area. The location area is designed for each individual mobile user such that the location management cost is minimized. The cost is calculated based on a continuous-time Markov chain. Simulation results acknowledge a lower cost of the proposed scheme compared to that of some known techniques. Our research on the resource management considers the dynamic allocation strategy in the integrated voice/data wireless networks. We propose two new channel de-allocation schemes, i.e., de-allocation for data packet (DASP) and de-allocation for both voice call and data packet (DASVP). We then combine the proposed de-allocation methods with channel re-allocation, and evaluate the performance of the schemes using an analytic model. The results indicate the necessity of adapting to QoS requirements on both voice call and data packet. Finally, a new QoS-based dynamic resource allocation scheme is proposed which differentiates the new and handoff voice calls. The scheme combines channel reservation, channel de-allocation/re-allocation for voice call and packet queue to adapt to QoS requirements by adjusting the number of reserved channels and packet queue size. The superiority of the propose scheme in meeting the QoS requirements over existing techniques is proved by the experimental studies

    Economic-Based Incentive Schemes for Dynamic Data Management in Mobile P2P Computing

    Get PDF
    Data management in mobile peer to peer (M-P2P) systems needs dynamic data management due to mobility and fragile wireless connection connecting resource constraint devices. Traditional methods of data management and services in mobile P2P environment generally assume all peers to cooperate. Since peer activities in M-P2P are not generally monitored, users assume that they are free to use the resources anyway they like. Under this feeling of freedom, a subset of users (free riders) begins to consume much more resources available on M-P2P than they wish to contribute. In addition, due to the dynamic nature of moving hosts, topology changes very often and traditional schemes fall short in providing reasonable data availability. This becomes much more important in M-P2P where the network communication is generally multi-hop and intermediate peers have to render relay services other than data providers to improve the connectivity. Economic-based incentive schemes have been proposed which may play a better role in inciting free riders to collaborate. The data and service availability can be increased by associating a price with data items and services. In such schemes, peers can bid for better services, intermediate peers can earn incentives by providing relay services and in fact, outgoing peers can lease data items to others to still earn incentives while disconnected. New peers can become data providers by providing hosting services to earn incentives. This tutorial will explore issues involved in managing resources using economic incentives

    Mobility modeling and management for next generation wireless networks

    Get PDF
    Mobility modeling and management in wireless networks are the set of tasks performed in order to model motion patterns, predict trajectories, get information on mobiles\u27 whereabouts and to make use of this information in handoff, routing, location management, resource allocation and other functions. In the literature, the speed of mobile is often and misleadingly referred to as the level of mobility, such as high or low mobility. This dissertation presents an information theoretic approach to mobility modeling and management, in which mobility is considered as a measure of uncertainty in mobile\u27s trajectory, that is, the mobility is low if the trajectory of a mobile is highly predictable even if the mobile is moving with high speed. On the other hand, the mobility is high if the trajectory of the mobile is highly erratic. Based on this mobility modeling concept, we classify mobiles into predictable and non-predictable mobility classes and optimize network operations for each mobility class. The dynamic mobility classification technique is applied to various mobility related issues of the next generation wireless networks such as location management, location-based services, and energy efficient routing in multihop cellular networks

    An XRI naming system for dynamic and federated clouds: a performance analysis

    Get PDF
    Abstract Cloud platforms are dynamic, self-optimizing, continuously changing environments where resources can be composed with other ones in order to provide many types of services to their users, e.g., companies, governments, organizations, and desktop/mobile clients. In order to enable cloud platforms to manage and control their assets, they need to name, identify, and resolve their virtual resources in different operating contexts. In such a scenario, naming, resource location, and information retrieval raise several issues regarding name space management. This paper aims to propose a standard practice for the implementation of a cloud naming system based on the eXtensible Resource Identifier (XRI) technology. More specifically, by means of the development of a Cloud Name Space Management (CNSM) front-end interacting with the OpenXRI architecture, we investigate its performance simulating typical cloud name space management tasks
    corecore