2,225 research outputs found

    Avaliação de controlo de sessões multicast em redes com contexto

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesOs utilizadores pretendem aceder, cada vez mais, a serviços multimédia com requisitos mais exigentes e personalizados. As limitações impostas pelos ambientes existentes (internet, 3G) para fornecer estes serviços levam à procura de melhores soluções, nomeadamente uma gestão eficaz das sessões multiparty. Neste tipo de soluções é normalmente utilizado o multicast, já que este permite reduzir os recursos utilizados, diminuindo o número de pacotes na rede. Contudo, o multicast não está consistente ao nível dos cenários de mobilidade, fundamentais nas redes de próxima geração. Actualmente existe uma vasta gama de tecnologias de acesso sem fios como WiFi, GPRS, UMTS e WiMAX. No futuro estas tecnologias diferentes complementar-se-ão convergindo numa infra-estrutura heterogénea capaz de fornecer um melhor serviço aos utilizadores, denominadas de redes 4G. A evolução dos terminais móveis também permitirá que estes se liguem simultaneamente a várias redes de acesso. Para uma melhor distribuição dos serviços dos utilizadores pelas redes de acesso disponíveis são necessários novos mecanismos de selecção. Uma nova selecção da rede baseada em informação de contexto (entidades e ambiente) tem tido grande relevo na comunidade científica. Assim, aplicações e rede reagem a alterações de contexto para uma melhor selecção da mesma. A dissertação apresentada encontra-se no âmbito do transporte multiparty com informação de contexto e reserva de recursos, permitindo a entrega do conteúdo de uma forma personalizada e com Qualidade de Serviço a vários utilizadores móveis, independentemente da tecnologia de acesso de cada um e da própria tecnologia da rede. Em suma, é utilizada uma arquitectura de rede baseada em informação de contexto e que reage eficazmente a alterações do mesmo. De forma a implementar a proposta apresentada recorreu-se à criação de várias entidades no simulador de redes NS-2. Os resultados foram obtidos usando diferentes cenários, avaliando a influência de cada parâmetro individualmente. Demonstrou-se que a arquitectura implementada permite suportar uma entrega dos conteúdos de uma maneira personalizada e independente da tecnologia utilizada. Obteve-se ainda uma boa gestão dos recursos da rede e uma melhoria na experiência percepcionada pelo utilizador através da selecção total da rede com base numa entidade de controlo central. A introdução do overlay de transporte multiparty melhora o comportamento geral da rede, minimizando as reconfigurações frequentes necessárias.Nowadays, more and more users want to access multimedia services with strong and personalized requirements. The limitations intrinsic to current environments (Internet and 3G) to provide this type of services motivate the research for an efficient management of multiparty sessions. The solution can also be based on multicast implementation, since it reduces resources utilization, decreasing the number of packets in the network. However, current multicast is not a strong solution in mobility scenarios, essential in next generation networks. Currently there is a wide range of wireless access technologies such as WiFi, GPRS, UMTS and WiMAX. In the future, these different technologies will converge in a complementary manner forming a heterogeneous infrastructure able to offer a better service to its users, usually named 4G. The evolution of mobile terminals will also allow them to connect simultaneously to several access networks. In order to a better distribution of the users services throughout available access networks, new selection mechanisms are required. A new network selection based on context information (entities and environments) is having a relevant role in scientific community. So, applications and networks react according to context changes, improving network selection. This Thesis is in the scope of context-aware multiparty transport with resources allocation, allowing the delivery of content in a personalized way with Quality of Service to several users, independently of the technology and the network. Resuming, the solution implements a context-aware network architecture that reacts efficiently to its changes. In order to implement this architecture, new entities were created in the network simulator NS-2. The results were obtained using different scenarios, evaluating the influence of each parameter independently. It was demonstrated that the integration of several components, allows a delivery of contents in a personalized manner and independently of the technology. The results showed a better management of the network resources and users experience, throughout the total network selection, based on a central control unit. The multiparty transport overlay improves the network behaviour, minimizing the necessary frequent reconfigurations

    A Decade of Research in Fog computing: Relevance, Challenges, and Future Directions

    Full text link
    Recent developments in the Internet of Things (IoT) and real-time applications, have led to the unprecedented growth in the connected devices and their generated data. Traditionally, this sensor data is transferred and processed at the cloud, and the control signals are sent back to the relevant actuators, as part of the IoT applications. This cloud-centric IoT model, resulted in increased latencies and network load, and compromised privacy. To address these problems, Fog Computing was coined by Cisco in 2012, a decade ago, which utilizes proximal computational resources for processing the sensor data. Ever since its proposal, fog computing has attracted significant attention and the research fraternity focused at addressing different challenges such as fog frameworks, simulators, resource management, placement strategies, quality of service aspects, fog economics etc. However, after a decade of research, we still do not see large-scale deployments of public/private fog networks, which can be utilized in realizing interesting IoT applications. In the literature, we only see pilot case studies and small-scale testbeds, and utilization of simulators for demonstrating scale of the specified models addressing the respective technical challenges. There are several reasons for this, and most importantly, fog computing did not present a clear business case for the companies and participating individuals yet. This paper summarizes the technical, non-functional and economic challenges, which have been posing hurdles in adopting fog computing, by consolidating them across different clusters. The paper also summarizes the relevant academic and industrial contributions in addressing these challenges and provides future research directions in realizing real-time fog computing applications, also considering the emerging trends such as federated learning and quantum computing.Comment: Accepted for publication at Wiley Software: Practice and Experience journa

    Desempenho de QoS e mobilidade de sessões multicast em redes dinâmicasMes

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesThe increasing demand in multimedia group services, contextawareness and seamless mobility implies strict requirements that cannot be satisfactorily addressed by the traditional transport control architectures for session content delivery. Moreover, context-aware networks introduce personalized concepts: any change in context can change the overall services and network environments, requiring the network and multicast sessions to be completely restructured in a very dynamic way. Regarding the complexity of maintaining scalability in context-aware networks, this Thesis has as main goal the development of an intelligent module, included in C-CAST architecture, capable of managing the entire network scheme. This mechanism depending on the scenario and the context of users and sources, and in cooperation with other network entities, must decide the most suitable network transport path in order to provide the best multiparty content delivery to the users, and manage the dynamicity of the network whenever changes occur. To perform its implementation, it was used an approach based in the interaction of different network components, exchanging context information between them. The intelligent module, using the updated network information, decides the better network connection to serve each user. In order to simulate the network behaviour in various situations, several scenarios were tested to evaluate its performance. The network is evaluated according to the several configured parameters, evaluating the improvements achieved in the network performance concerning different metrics, e.g. delay, lost packets ratio, overhead introduced by the architecture signalling. Through the implemented simulation setup, it is possible to conclude that the deployment of the solution proposed effectively provides an enhanced service to the users, distributing the multiparty content with QoS assurance using context information.O aumento da exigência em serviços de grupo, redes baseadas em contexto e mobilidade transparente implicam requisitos rígidos que não podem ser satisfeitos pelas arquitecturas tradicionais de controlo de transporte para entrega de conteúdos de sessão. Não obstante, redes baseadas em contexto introduzem conceitos personalizados: qualquer mudança no contexto pode mudar completamente os serviços e a própria rede, sendo necessário que a rede e as sessões multicast sejam completamente reestruturadas de uma forma dinâmica. Tendo em conta a complexidade de manter a escalabilidade em redes baseadas em contexto, esta Tese tem como principal objectivo o desenvolvimento de um módulo inteligente, que faz parte da arquitectura do projecto C-CAST, capaz de gerir toda a rede. Este mecanismo, dependendo do cenário da rede e do contexto dos utilizadores e das fontes, e em cooperação com outras entidades da rede, deve seleccionar a o caminho mais apropriado da rede de modo a fornecer da melhor forma o conteúdo aos utilizadores, e gerir a dinâmicidade da rede sempre que ocorrem mudanças. Para o implementar foi usada um método baseado na interacção de vários componentes, que trocam informação sobre contextos entre eles. O componente inteligente, usando informação actualizada da rede decide qual a melhor conexão da rede para servir cada utilizador. De forma a simular o comportamento da rede em várias situações, foram testados diversos cenários para avaliar a sua performance. A rede é avaliada de acordo com os vários parâmetros configurados, avaliando as melhorias conseguidas na performance da rede, por exemplo em termos de atrasos, rácio de pacotes perdidos e a carga imposta pelas mensagens de controlo da arquitectura. Através das simulações efectuadas é possível concluir que aplicando a arquitectura proposta, é fornecido de forma eficiente um serviço melhorado aos utilizadores, distribuindo o serviço de grupo com garantias de Qualidade de Serviço e usando informação de contexto

    A Cloud Infrastructure for Multimedia Conferencing Applications

    Get PDF
    Conferencing enables the conversational exchange of media between several parties. Conferencing applications are among important enterprise applications nowadays. However, fine grained scalability and elasticity remain quite elusive for multimedia conferencing applications, although they are key to efficiency in the resource usage. Cloud computing is an emerging paradigm for provisioning network, storage, and computing resources on demand using a pay-per-use model. Cloud-based conferencing services can inherent several benefits such as resource usage efficiency, scalability and easy introduction of different types of conferences. This thesis relies on a recently proposed business model for cloud-based conferencing. The model has the following roles: conferencing substrate provider, conferencing infrastructure provider, conferencing platform provider, conferencing service provider, and broker. Conferencing substrates are generally atomic and served as elementary building blocks (e.g. signalling, mixing) of conferencing applications. They can be virtualized and shared among several conferencing applications for resource efficiency purposes. Multiple conferencing substrates provided by different conferencing substrate providers can be combined to build a conferencing service (e.g. a dial-out signalling substrate and an audio mixer substrate can be composed to build a dial-out audio conference service). This thesis focuses on the conferencing infrastructure provider and conferencing substrate provider roles. It proposes a virtualized cloud infrastructure for multimedia conferencing applications. This infrastructure relies on fine grained conferencing substrates (e.g. dial-out signalling, dial-in signalling, audio mixer, video mixer, floor control, etc.) and offers several advantages in addition to fine grained scalability and elasticity (e.g. assembling substrates on the fly to build new conferencing applications). An architecture is proposed to realize the roles of conferencing infrastructure provider, conferencing substrate provider and their interactions. A resource allocation mechanism for conferencing substrates is also proposed. We have also built a prototype with Xen as the virtualization platform and validated the architecture. Performance has also been evaluated

    Integrating Context-Awareness in the IP Multimedia Subsystem for Enhanced Session Control and Service Provisioning Capabilities

    Get PDF
    The 3GPP-defined IP Multimedia Subsystem (IMS) is becoming the de-facto standard for IP-based multimedia communication services. It consists of an overlay control and service layer that is deployed on top of IP-based mobile and fixed networks. This layer encompasses a set of common functions (e.g. session control functions allowing the initiation/modification/termination of sessions) and service logics that are needed for the seamless provisioning of IP multimedia services to users, via different access technologies. As it continues to evolve, the IMS still faces several challenges including: the enabling of innovative and personalized services that would appeal to users and increase network operators' revenues; its interaction with other types of networks (e.g. wireless sensor networks) as means to enhance its capabilities; and the support of advanced QoS schemes that would manage the network resources in an efficient and adaptive manner. The context-awareness concept, which comes from the pervasive computing field, signifies the ability to use situational information (or context) in support to operations and decision making and for the provision of relevant services to the user. Context-awareness is considered to enhance users' experience and is seen as an enabler to adaptability and service personalization - two capabilities that could play important roles in telecommunication environments. This thesis focuses on the introduction of the context-awareness technology in the IMS, as means to enhance its session control and service provisioning capabilities. It starts by presenting the necessary background information, followed by a derivation of requirements and a review of the related work. To ensure the availability of contextual information within the network, we then propose an architecture for context information acquisition and management in the IMS. This architecture leverages and extends the 3GPP presence framework. Building on the capabilities of this architecture, we demonstrate how the managed information could be integrated in IMS operations, at the control and service levels. Showcasing control level integration, we propose a novel context-aware call differentiation framework as means to offer enhanced QoS support (for sessions/calls) in IMS-based networks. This framework enables the differentiation between different categories of calls at the IMS session control level, via dynamic and adaptive resource allocation, in addition to supporting a specialized charging model. Furthermore, we also propose a framework for enhanced IMS emergency communication services. This framework addresses the limitations of existing IP-based emergency solutions, by offering three main improvements: a QoS-enhanced emergency service; a context-aware personalized emergency service; and a conferencing-enhanced emergency service. We demonstrate the use of context awareness at the IMS service level using two new context-aware IMS applications. Finally, to validate our solutions and evaluate their performance, we build various proof-of-concept prototypes and OPNET simulation model
    corecore