5,436 research outputs found

    Dynamic remeshing and applications

    Get PDF
    Triangle meshes are a flexible and generally accepted boundary representation for complex geometric shapes. In addition to their geometric qualities such as for instance smoothness, feature sensitivity ,or topological simplicity, intrinsic qualities such as the shape of the triangles, their distribution on the surface and the connectivity is essential for many algorithms working on them. In this thesis we present a flexible and efficient remeshing framework that improves these "intrinsic\u27; properties while keeping the mesh geometrically close to the original surface. We use a particle system approach and combine it with an iterative remeshing process in order to trim the mesh towards the requirements imposed by different applications. The particle system approach distributes the vertices on the mesh with respect to a user-defined scalar-field, whereas the iterative remeshing is done by means of "Dynamic Meshes\u27;, a combination of local topological operators that lead to a good natured connectivity. A dynamic skeleton ensures that our approach is able to preserve surface features, which are particularly important for the visual quality of the mesh. None of the algorithms requires a global parameterization or patch layouting in a preprocessing step, but works with simple local parameterizations instead. In the second part of this work we will show how to apply this remeshing framework in several applications scenarios. In particular we will elaborate on interactive remeshing, dynamic, interactive multiresolution modeling, semiregular remeshing and mesh simplification and we will show how the users can adapt the involved algorithms in a way that the resulting mesh meets their personal requirements

    Dynamic Remeshing and Applications

    Full text link

    Adaptive finite element simulation of three-dimensional surface tension dominated free-surface flow problems

    Get PDF
    An arbitrary Lagrangian--Eulerian finite element method is described for the solution of time-dependent, three-dimensional, free-surface flow problems. Many flows of practical significance involve contact lines, where the free surface meets a solid boundary. This contact line may be pinned to a particular part of the solid but is more typically free to slide in a manner that is characterised by the dynamic contact angle formed by the fluid. We focus on the latter case and use a model that admits spatial variation of the contact angle: thus permitting variable wetting properties to be simulated. The problems are driven by the motion of the fluid free surface (under the action of surface tension and external forces such as gravity) hence the geometry evolves as part of the solution, and mesh adaptivity is required to maintain the quality of the computational mesh for the physical domain. Continuous mesh adaptivity, in the form of a pseudo-elastic mesh movement scheme, is used to move the interior mesh nodes in response to the motion of the fluid's free surface. Periodic, discrete remeshing stages are also used for cases in which the fluid volume has grown, or is sufficiently distorted, by the free-surface motion. Examples are given of a droplet sliding on an inclined uniform plane and of a droplet spreading on a surface with variable wetting properties

    Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement

    Get PDF
    The typical goal of surface remeshing consists in finding a mesh that is (1) geometrically faithful to the original geometry, (2) as coarse as possible to obtain a low-complexity representation and (3) free of bad elements that would hamper the desired application. In this paper, we design an algorithm to address all three optimization goals simultaneously. The user specifies desired bounds on approximation error {\delta}, minimal interior angle {\theta} and maximum mesh complexity N (number of vertices). Since such a desired mesh might not even exist, our optimization framework treats only the approximation error bound {\delta} as a hard constraint and the other two criteria as optimization goals. More specifically, we iteratively perform carefully prioritized local operators, whenever they do not violate the approximation error bound and improve the mesh otherwise. In this way our optimization framework greedily searches for the coarsest mesh with minimal interior angle above {\theta} and approximation error bounded by {\delta}. Fast runtime is enabled by a local approximation error estimation, while implicit feature preservation is obtained by specifically designed vertex relocation operators. Experiments show that our approach delivers high-quality meshes with implicitly preserved features and better balances between geometric fidelity, mesh complexity and element quality than the state-of-the-art.Comment: 14 pages, 20 figures. Submitted to IEEE Transactions on Visualization and Computer Graphic

    SurfelMeshing: Online Surfel-Based Mesh Reconstruction

    Full text link
    We address the problem of mesh reconstruction from live RGB-D video, assuming a calibrated camera and poses provided externally (e.g., by a SLAM system). In contrast to most existing approaches, we do not fuse depth measurements in a volume but in a dense surfel cloud. We asynchronously (re)triangulate the smoothed surfels to reconstruct a surface mesh. This novel approach enables to maintain a dense surface representation of the scene during SLAM which can quickly adapt to loop closures. This is possible by deforming the surfel cloud and asynchronously remeshing the surface where necessary. The surfel-based representation also naturally supports strongly varying scan resolution. In particular, it reconstructs colors at the input camera's resolution. Moreover, in contrast to many volumetric approaches, ours can reconstruct thin objects since objects do not need to enclose a volume. We demonstrate our approach in a number of experiments, showing that it produces reconstructions that are competitive with the state-of-the-art, and we discuss its advantages and limitations. The algorithm (excluding loop closure functionality) is available as open source at https://github.com/puzzlepaint/surfelmeshing .Comment: Version accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    A Mixed Eulerian-Lagrangian Model for the Analysis of Dynamic Fracture

    Get PDF
    National Science Foundation Grant MEA 84-0065

    Finite element simulation of three-dimensional free-surface flow problems

    Get PDF
    An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface. The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet

    Numerical analysis of the fluid-structure interaction in a membrane pump

    Get PDF
    In this research, the fluid-structure interaction in a recently developed membrane pump is analysed. The governing equations for the laminar flow and for the deformation of the membrane are solved with two separate codes, which are coupled with the quasi-Newton technique with an approximation for the inverse of the Jacobian from a least-squares model. After the description of the model and the solution techniques, a detailed analysis of the flow field, the deformation of the structure and the stress in the membrane is presented. An energetic analysis of the pump is performed, and the pump's efficiency is calculated
    • …
    corecore