12,878 research outputs found

    Extracting Biomolecular Interactions Using Semantic Parsing of Biomedical Text

    Full text link
    We advance the state of the art in biomolecular interaction extraction with three contributions: (i) We show that deep, Abstract Meaning Representations (AMR) significantly improve the accuracy of a biomolecular interaction extraction system when compared to a baseline that relies solely on surface- and syntax-based features; (ii) In contrast with previous approaches that infer relations on a sentence-by-sentence basis, we expand our framework to enable consistent predictions over sets of sentences (documents); (iii) We further modify and expand a graph kernel learning framework to enable concurrent exploitation of automatically induced AMR (semantic) and dependency structure (syntactic) representations. Our experiments show that our approach yields interaction extraction systems that are more robust in environments where there is a significant mismatch between training and test conditions.Comment: Appearing in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16

    Multi-Action Recognition via Stochastic Modelling of Optical Flow and Gradients

    Get PDF
    In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    GOGGLES: Automatic Image Labeling with Affinity Coding

    Full text link
    Generating large labeled training data is becoming the biggest bottleneck in building and deploying supervised machine learning models. Recently, the data programming paradigm has been proposed to reduce the human cost in labeling training data. However, data programming relies on designing labeling functions which still requires significant domain expertise. Also, it is prohibitively difficult to write labeling functions for image datasets as it is hard to express domain knowledge using raw features for images (pixels). We propose affinity coding, a new domain-agnostic paradigm for automated training data labeling. The core premise of affinity coding is that the affinity scores of instance pairs belonging to the same class on average should be higher than those of pairs belonging to different classes, according to some affinity functions. We build the GOGGLES system that implements affinity coding for labeling image datasets by designing a novel set of reusable affinity functions for images, and propose a novel hierarchical generative model for class inference using a small development set. We compare GOGGLES with existing data programming systems on 5 image labeling tasks from diverse domains. GOGGLES achieves labeling accuracies ranging from a minimum of 71% to a maximum of 98% without requiring any extensive human annotation. In terms of end-to-end performance, GOGGLES outperforms the state-of-the-art data programming system Snuba by 21% and a state-of-the-art few-shot learning technique by 5%, and is only 7% away from the fully supervised upper bound.Comment: Published at 2020 ACM SIGMOD International Conference on Management of Dat
    corecore