11 research outputs found

    An Integrated Fuzzy Inference Based Monitoring, Diagnostic, and Prognostic System

    Get PDF
    To date the majority of the research related to the development and application of monitoring, diagnostic, and prognostic systems has been exclusive in the sense that only one of the three areas is the focus of the work. While previous research progresses each of the respective fields, the end result is a variable grab bag of techniques that address each problem independently. Also, the new field of prognostics is lacking in the sense that few methods have been proposed that produce estimates of the remaining useful life (RUL) of a device or can be realistically applied to real-world systems. This work addresses both problems by developing the nonparametric fuzzy inference system (NFIS) which is adapted for monitoring, diagnosis, and prognosis and then proposing the path classification and estimation (PACE) model that can be used to predict the RUL of a device that does or does not have a well defined failure threshold. To test and evaluate the proposed methods, they were applied to detect, diagnose, and prognose faults and failures in the hydraulic steering system of a deep oil exploration drill. The monitoring system implementing an NFIS predictor and sequential probability ratio test (SPRT) detector produced comparable detection rates to a monitoring system implementing an autoassociative kernel regression (AAKR) predictor and SPRT detector, specifically 80% vs. 85% for the NFIS and AAKR monitor respectively. It was also found that the NFIS monitor produced fewer false alarms. Next, the monitoring system outputs were used to generate symptom patterns for k-nearest neighbor (kNN) and NFIS classifiers that were trained to diagnose different fault classes. The NFIS diagnoser was shown to significantly outperform the kNN diagnoser, with overall accuracies of 96% vs. 89% respectively. Finally, the PACE implementing the NFIS was used to predict the RUL for different failure modes. The errors of the RUL estimates produced by the PACE-NFIS prognosers ranged from 1.2-11.4 hours with 95% confidence intervals (CI) from 0.67-32.02 hours, which are significantly better than the population based prognoser estimates with errors of ~45 hours and 95% CIs of ~162 hours

    Merging Data Sources to Predict Remaining Useful Life – An Automated Method to Identify Prognostic Parameters

    Get PDF
    The ultimate goal of most prognostic systems is accurate prediction of the remaining useful life (RUL) of individual systems or components based on their use and performance. This class of prognostic algorithms is termed Degradation-Based, or Type III Prognostics. As equipment degrades, measured parameters of the system tend to change; these sensed measurements, or appropriate transformations thereof, may be used to characterize degradation. Traditionally, individual-based prognostic methods use a measure of degradation to make RUL estimates. Degradation measures may include sensed measurements, such as temperature or vibration level, or inferred measurements, such as model residuals or physics-based model predictions. Often, it is beneficial to combine several measures of degradation into a single parameter. Selection of an appropriate parameter is key for making useful individual-based RUL estimates, but methods to aid in this selection are absent in the literature. This dissertation introduces a set of metrics which characterize the suitability of a prognostic parameter. Parameter features such as trendability, monotonicity, and prognosability can be used to compare candidate prognostic parameters to determine which is most useful for individual-based prognosis. Trendability indicates the degree to which the parameters of a population of systems have the same underlying shape. Monotonicity characterizes the underlying positive or negative trend of the parameter. Finally, prognosability gives a measure of the variance in the critical failure value of a population of systems. By quantifying these features for a given parameter, the metrics can be used with any traditional optimization technique, such as Genetic Algorithms, to identify the optimal parameter for a given system. An appropriate parameter may be used with a General Path Model (GPM) approach to make RUL estimates for specific systems or components. A dynamic Bayesian updating methodology is introduced to incorporate prior information in the GPM methodology. The proposed methods are illustrated with two applications: first, to the simulated turbofan engine data provided in the 2008 Prognostics and Health Management Conference Prognostics Challenge and, second, to data collected in a laboratory milling equipment wear experiment. The automated system was shown to identify appropriate parameters in both situations and facilitate Type III prognostic model development

    Development of a Prognostic Method for the Production of Undeclared Enriched Uranium

    Get PDF
    As global demand for nuclear energy and threats to nuclear security increase, the need for verification of the peaceful application of nuclear materials and technology also rises. In accordance with the Nuclear Nonproliferation Treaty, the International Atomic Energy Agency is tasked with verification of the declared enrichment activities of member states. Due to the increased cost of inspection and verification of a globally growing nuclear energy industry, remote process monitoring has been proposed as part of a next-generation, information-driven safeguards program. To further enhance this safeguards approach, it is proposed that process monitoring data may be used to not only verify the past but to anticipate the future via prognostic analysis. While prognostic methods exist for health monitoring of physical processes, the literature is absent of methods to predict the outcome of decision-based events, such as the production of undeclared enriched uranium. This dissertation introduces a method to predict the time at which a significant quantity of unaccounted material is expected to be diverted during an enrichment process. This method utilizes a particle filter to model the data and provide a Type III (degradation-based) prognostic estimate of time to diversion of a significant quantity. Measurement noise for the particle filter is estimated using historical data and may be updated with Bayesian estimates from the analyzed data. Dynamic noise estimates are updated based on observed changes in process data. The reliability of the prognostic model for a given range of data is validated via information complexity scores and goodness of fit statistics. The developed prognostic method is tested using data produced from the Oak Ridge Mock Feed and Withdrawal Facility, a 1:100 scale test platform for developing gas centrifuge remote monitoring techniques. Four case studies are considered: no diversion, slow diversion, fast diversion, and intermittent diversion. All intervals of diversion and non-diversion were correctly identified and significant quantity diversion time was accurately estimated. A diversion of 0.8 kg over 85 minutes was detected after 10 minutes and predicted to be 84 minutes and 10 seconds after 46 minutes and 40 seconds with an uncertainty of 2 minutes and 52 seconds

    Criticality in Location-Based Management of Construction

    Get PDF

    Sustainable Freight Transport

    Get PDF
    This Special Issue of Sustainability reports on recent research aiming to make the freight transport sector more sustainable. The sector faces significant challenges in different domains of sustainability, including the reduction of greenhouse gas emissions and the management of health and safety impacts. In particular, the intention to decarbonise the sector’s activities has led to a strong increase in research efforts—this is also the main focus of the Special Issue. Sustainable freight transport operations represent a significant challenge with multiple technical, operational, and political aspects. The design, testing, and implementation of interventions require multi-disciplinary, multi-country research. Promising interventions are not limited to introducing new transport technologies, but also include changes in framework conditions for transport, in terms of production and logistics processes. Due to the uncertainty of impacts, the number of stakeholders, and the difficulty of optimizing across actors, understanding the impacts of these measures is not a trivial problem. Therefore, research is not only needed on the design and evaluation of individual interventions, but also on the approach of their joint deployment through a concerted public/private programme. This Special Issue addresses both dimensions, in two distinct groups of papers—the programming of interventions and the individual sustainability measures themselves

    Toward Sustainability: Bike-Sharing Systems Design, Simulation and Management

    Get PDF
    The goal of this Special Issue is to discuss new challenges in the simulation and management problems of both traditional and innovative bike-sharing systems, to ultimately encourage the competitiveness and attractiveness of BSSs, and contribute to the further promotion of sustainable mobility. We have selected thirteen papers for publication in this Special Issue

    Challenges for work-based learning in vocational education and training in the Nordic Countries

    Get PDF
    corecore