61 research outputs found

    Coping with production time variability via dynamic lead-time quotation

    Get PDF
    In this paper, we propose two dynamic lead-time quotation policies in an M/GI/1 type make-to-stock queueing system serving lead-time sensitive customers with a single type of product. Incorporating non-exponential service times in an exact method for make-to-stock queues is usually deemed difficult. Our analysis of the proposed policies is exact and requires the numerical inversion of the Laplace transform of the sojourn time of an order to be placed. The first policy assures that the long-run probability of delivering the product within the quoted lead-time is the same for all backlogged customers. The second policy is a refinement of the first which improves the profitability if customers are oversensitive to even short delays in delivery. Numerical results show that both policies perform close to the optimal policy that was characterized only for exponential service times. The new insight gained is that the worsening impact of the production time variability, which is felt significantly in systems accepting all customers by quoting zero lead times, decreases when dynamic lead-time quotation policies are employed

    Revenue Management In Manufacturing: A Research Landscape

    Get PDF
    Revenue management is the science of using past history and current levels of order activity to forecast demand as accurately as possible in order to set and update pricing and product availability decisions across various sales channels to maximize profitability. In much the same way that revenue management has transformed the airline industry in selling tickets for the same flight at markedly different rates based upon product restrictions, time to departure, and the number of unsold seats, many manufacturing companies have started exploring innovative revenue management strategies in an effort to improve their operations and profitability. These strategies employ sophisticated demand forecasting and optimization models that are based on research from many areas, including management science and economics, and that can take advantage of the vast amount of data available through customer relationship management systems in order to calibrate the models. In this paper, we present an overview of revenue management systems and provide an extensive survey of published research along a landscape delineated by three fundamental dimensions of capacity management, pricing, and market segmentation

    Optimal and Heuristic Lead-Time Quotation For an Integrated Steel Mill With a Minimum Batch Size

    Get PDF
    This paper presents a model of lead-time policies for a production system, such as an integrated steel mill, in which the bottleneck process requires a minimum batch size. An accurate understanding of internal lead-time quotations is necessary for making good customer delivery-date promises, which must take into account processing time, queueing time and time for arrival of the requisite volume of orders to complete the minimum batch size requirement. The problem is modeled as a stochastic dynamic program with a large state space. A computational study demonstrates that lead time for an arriving order should generally be a decreasing function of the amount of that product already on order (and waiting for minimum batch size to accumulate), which leads to a very fast and accurate heuristic. The computational study also provides insights into the relationship between lead-time quotation, arrival rate, and the sensitivity of customers to the length of delivery promises

    Revenue Optimization for a Make-to-Order Queue in an Uncertain Market Environment

    Get PDF
    We consider a revenue-maximizing make-to-order manufacturer that serves a market of price- and delay-sensitive customers and operates in an environment in which the market size varies stochastically over time. A key feature of our analysis is that no model is assumed for the evolution of the market size. We analyze two main settings: (i) the size of the market is observable at any point in time; and (ii) the size of the market is not observable and hence cannot be used for decision making. We focus on high-volume systems that are characterized by large processing capacities and market sizes, and where the latter fluctuate on a slower timescale than that of the underlying production system dynamics. We develop an approach to tackle such problems that is based on an asymptotic analysis and that yields near-optimal policy recommendations for the original system via the solution of a stochastic fluid model

    Revenue Management for Make-to-Order and Make-to-Stock Systems

    Get PDF
    With the success of Revenue Management (RM) techniques over the past three decades in various segments of the service industry, many manufacturing firms have started exploring innovative RM technologies to improve their profits. This dissertation studies RM for make-to-order (MTO) and make-to-stock (MTS) systems. We start with a problem faced by a MTO firm that has the ability to reject or accept the order and set prices and lead-times to influence demands. The firm is confronted with the problem to decide, which orders to accept or reject and trade-off the price, lead-time and potential for increased demand against capacity constraints, in order to maximize the total profits in a finite planning horizon with deterministic demands. We develop a mathematical model for this problem. Through numerical analysis, we present insights regarding the benefits of price customization and lead-time flexibilities in various demand scenarios. However, the demands of MTO firms are always hard to be predicted in most situations. We further study the above problem under the stochastic demands, with the objective to maximize the long-run average profit. We model the problem as a Semi-Markov Decision Problem (SMDP) and develop a reinforcement learning (RL) algorithm-Q-learning algorithm (QLA), in which a decision agent is assigned to the machine and improves the accuracy of its action-selection decisions via a “learning process. Numerical experiment shows the superior performance of the QLA. Finally, we consider a problem in a MTS production system consists of a single machine in which the demands and the processing times for N types of products are random. The problem is to decide when, what, and how much to produce so that the long-run average profit. We develop a mathematical model and propose two RL algorithms for real-time decision-making. Specifically, one is a Q-learning algorithm for Semi-Markov decision process (QLS) and another is a Q-learning algorithm with a learning-improvement heuristic (QLIH) to further improve the performance of QLS. We compare the performance of QLS and QLIH with a benchmarking Brownian policy and the first-come-first-serve policy. The numerical results show that QLIH outperforms QLS and both benchmarking policies

    Convexity Properties and Comparative Statics for M/M/S Queues with Balking and Reneging

    Get PDF
    We use sample path arguments to derive convexity properties of an M/M/S queue with impatient customers that balk and renege. First, assuming that the balking probability and reneging rate are increasing and concave in the total number of customers in the system (head-count), we prove that the expected head-count is convex decreasing in the capacity (service rate). Second, with linear reneging and balking, we show that the expected lost sales rate is convex decreasing in the capacity. Finally, we employ a sample-path sub-modularity approach to comparative statics. That is, we employ sample path arguments to show how the optimal capacity changes as we vary the parameters of customer demand and impatience. We find that the optimal capacity increases in the demand rate and decreases with the balking probability, but is not monotone in the reneging rate. This means, surprisingly, that failure to account for customersâ reneging may result in over-investment in capacity. Finally, we show that a seemingly minor change in system structure, customer commitment during service, produces qualitatively different convexity properties and comparative statics.Operations Management Working Papers Serie

    Study and Prospects: Adaptive Planning and Control of Supply Chain in One-of-a-kind Production

    Get PDF
    Based on the research project titled “Adaptive Planning and Control of Supply Chain in One-of-a-kind Production”, the research group performed a systematic review of supply chain integration, risk prediction and control and trace ability. Studies of a computer-aided and integrated production system for cost-effective OKP systemare included. Our efforts relevant to integration of supply chain in OKP, modeling &control of ripple effects in OKP supply chain and the trace ability of the OKP supply chain are introduced in this paper

    Minimal-Variance Distributed Deadline Scheduling in a Stationary Environment

    Get PDF
    Many modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, variability in service capacity often incurs operational and infrastructure costs. In this paper, we propose distributed algorithms that minimize service capacity variability when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes service capacity variance subject to strict demand and deadline requirements under stationary Poisson arrivals. We also characterize the optimal distributed policies for more general settings with soft demand requirements, soft deadline requirements, or both. Additionally, we show how close the performance of the optimal distributed policy is to that of the optimal centralized policy by deriving a competitive-ratio-like bound
    corecore