65,177 research outputs found

    Machine learning for identifying demand patterns of home energy management systems with dynamic electricity pricing

    Get PDF
    Energy management plays a crucial role in providing necessary system flexibility to deal with the ongoing integration of volatile and intermittent energy sources. Demand Response (DR) programs enhance demand flexibility by communicating energy market price volatility to the end-consumer. In such environments, home energy management systems assist the use of flexible end-appliances, based upon the individual consumer's personal preferences and beliefs. However, with the latter heterogeneously distributed, not all dynamic pricing schemes are equally adequate for the individual needs of households. We conduct one of the first large scale natural experiments, with multiple dynamic pricing schemes for end consumers, allowing us to analyze different demand behavior in relation with household attri

    A Distributed Demand-Side Management Framework for the Smart Grid

    Get PDF
    This paper proposes a fully distributed Demand-Side Management system for Smart Grid infrastructures, especially tailored to reduce the peak demand of residential users. In particular, we use a dynamic pricing strategy, where energy tariffs are function of the overall power demand of customers. We consider two practical cases: (1) a fully distributed approach, where each appliance decides autonomously its own scheduling, and (2) a hybrid approach, where each user must schedule all his appliances. We analyze numerically these two approaches, showing that they are characterized practically by the same performance level in all the considered grid scenarios. We model the proposed system using a non-cooperative game theoretical approach, and demonstrate that our game is a generalized ordinal potential one under general conditions. Furthermore, we propose a simple yet effective best response strategy that is proved to converge in a few steps to a pure Nash Equilibrium, thus demonstrating the robustness of the power scheduling plan obtained without any central coordination of the operator or the customers. Numerical results, obtained using real load profiles and appliance models, show that the system-wide peak absorption achieved in a completely distributed fashion can be reduced up to 55%, thus decreasing the capital expenditure (CAPEX) necessary to meet the growing energy demand

    Simulation modeling for energy consumption of residential consumers in response to demand side management.

    Get PDF
    Energy efficiency in the electricity distribution system continues to gain importance as demand for electricity keeps rising and resources keep diminishing. Achieving higher energy efficiency by implementing control strategies and demand response (DR) programs has always been a topic of interest in the electric utility industry. The advent of smart grids with enhanced data communication capabilities propels DR to be an essential part of the next generation power distribution system. Fundamentally, DR has the ability to charge a customer the true price of electricity at the time of use, and the general perception is that consumers would shift their load to a cheaper off-peak period. Consequently, when designing incentives most DR literature assumes consumers always minimize total electricity cost when facing energy consumption decisions. However, in practice, it has been shown that customers often override financial incentives if they feel strongly about the inconvenience of load-shifting arrangements. In this dissertation, an energy consumption model based on consumers‟ response to both cost and convenience/comfort is proposed in studying the effects of differential pricing mechanisms. We use multi-attribute utility functions and a model predictive control mechanism to simulate consumer behavior of using non-thermostatic loads vi (prototypical home appliances) and thermostatically controlled load (HVAC). The distributed behavior patterns caused by risk nature, thermal preferences, household size, etc. are all incorporated using an object-oriented simulation model to represent a typical residential population. The simulation based optimization platform thus developed is used to study various types of pricing mechanisms including static and dynamic variable pricing. There are many electric utilities that have applied differential pricing structures to influence consumer behavior. However, majority of current DR practices include static variable pricings, since consumer response to dynamic prices is very difficult to predict. We also study a novel pricing method using demand charge on coincident load. Such a pricing model is based on consumers‟ individual contribution to the monthly system peak, which is highly stochastic. We propose to use the conditional Markov chain to calculate the probability that the system will reach a peak, and subsequently simulate consumers‟ behavior in response to that peak. Sensitivity analysis and comparisons of various rate structures are done using simulation. Overall, this dissertation provides a simulation model to study electricity consumers‟ response to DR programs and various rate structures, and thus can be used to guide the design of optimal pricing mechanism in demand side management

    Topics in Demand Response for Energy Management in Smart Grid

    Get PDF
    Future electricity grids will enable greater and more sophisticated demand side participation, which refers to the inclusion of mechanisms that enable dynamic modification of electricity demand into the operations of the electricity market, known as Demand Response (DR). The underlying information-flow infrastructures provided by the emerging smart grid enhance the interactions between customers and the market, by which DR will improve electricity grids in several aspects, e.g., by reducing peak demand and reducing need for expensive peaker plants, or by enabling demand to follow supply such as those from volatile renewable resources, etc. Many types of appliances provide flexibilities in power usage which can be viewed as demand response resources, and how to exploit such flexibilities to achieve the benefits offered by DR is a central challenge. In this dissertation, we design algorithms and architectures to bridge the gap between scheduling appliances and the benefits that DR can bring to electricity grid by utilizing the smart grid\u27s underlying information infrastructure. First, we focus on demand response within the consumer premise, where an energy management controller (EMC) schedules appliance operation on behalf of customers to save energy cost. We propose an optimization-based control scheme for the EMC in the building that integrates both the operational flexible appliances such as clothes washer/dryer, dish washer and plug-in electric vehicles (PEVs), but also the thermostatically controlled appliances such as HVAC (heating, ventilation, and air conditioning) systems together with the thermal mass of the building. Model predictive control is employed to account for uncertainty in electricity prices and weather information. Under time-varying pricing, scheduling appliances smartly using our scheme can incur notable energy cost saving for customers. As an alternative, we also propose a communication-based control approach which is a joint appliance access and scheduling scheme in which the control algorithms are embedded into the communication protocols used by appliances. The control scheme is based on a threshold maximum power consumption set by the EMC; and we discuss how this threshold can be chosen so that it integrates the availability of local distributed renewable energy resources.Then we investigate demand response in the retail market level which involves interactions between customers and utilities. Pricing-based control and direct load control (DLC) are two types of approaches that are used or envisioned for this level. To address pricing based control methods, we propose real-time pricing (RTP) signals that can be designed to work with customer premise EMCs. The interaction between these EMCs and the pricing-setting utilities is modeled as a Stackelberg game. We demonstrate that our proposed RTP scheme reduces peak load and alleviates rebound peaks that are the typical shortcomings in existing pricing approaches. To address DLC methods, we propose a distributed DLC scheme based on a two-layer communication network infrastructure for large-scale, aggregate DR implementations. In the proposed scheme, average consensus algorithms are employed to distributively allocate control tasks amongst EMCs so that local appliance scheduling within each home will eventually achieve the aggregated control task, i.e., to alleviate mismatch between electricity supply and demand.Finally, we study how demand response affects the wholesale electricity market. As is conventional when studying interactions between electricity generators, we employ the Cournot game model to analyze how DR aggregators may impact wholesale energy markets. To do so, we assume that DR aggregators employ a computationally efficient, centralized scheduling mechanism to manage deferrable load over a large aggregate set of consumers. The load reduction from deferrable load can be seen as `generation\u27 in terms of balancing the market and is compensated as such under current regulatory mandates. Thus, the DR aggregator competes with other generators in a Cournot-Nash manner to make a profit in the wholesale market; and electricity prices are consequently reduced. We provide equilibrium analysis of the wholesale market that includes DR aggregators and demonstrate that under certain conditions the equilibrium exists and is unique

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho
    • …
    corecore