16 research outputs found

    MURAC: A unified machine model for heterogeneous computers

    Get PDF
    Includes bibliographical referencesHeterogeneous computing enables the performance and energy advantages of multiple distinct processing architectures to be efficiently exploited within a single machine. These systems are capable of delivering large performance increases by matching the applications to architectures that are most suited to them. The Multiple Runtime-reconfigurable Architecture Computer (MURAC) model has been proposed to tackle the problems commonly found in the design and usage of these machines. This model presents a system-level approach that creates a clear separation of concerns between the system implementer and the application developer. The three key concepts that make up the MURAC model are a unified machine model, a unified instruction stream and a unified memory space. A simple programming model built upon these abstractions provides a consistent interface for interacting with the underlying machine to the user application. This programming model simplifies application partitioning between hardware and software and allows the easy integration of different execution models within the single control ow of a mixed-architecture application. The theoretical and practical trade-offs of the proposed model have been explored through the design of several systems. An instruction-accurate system simulator has been developed that supports the simulated execution of mixed-architecture applications. An embedded System-on-Chip implementation has been used to measure the overhead in hardware resources required to support the model, which was found to be minimal. An implementation of the model within an operating system on a tightly-coupled reconfigurable processor platform has been created. This implementation is used to extend the software scheduler to allow for the full support of mixed-architecture applications in a multitasking environment. Different scheduling strategies have been tested using this scheduler for mixed-architecture applications. The design and implementation of these systems has shown that a unified abstraction model for heterogeneous computers provides important usability benefits to system and application designers. These benefits are achieved through a consistent view of the multiple different architectures to the operating system and user applications. This allows them to focus on achieving their performance and efficiency goals by gaining the benefits of different execution models during runtime without the complex implementation details of the system-level synchronisation and coordination

    Run-time management for future MPSoC platforms

    Get PDF
    In recent years, we are witnessing the dawning of the Multi-Processor Systemon- Chip (MPSoC) era. In essence, this era is triggered by the need to handle more complex applications, while reducing overall cost of embedded (handheld) devices. This cost will mainly be determined by the cost of the hardware platform and the cost of designing applications for that platform. The cost of a hardware platform will partly depend on its production volume. In turn, this means that ??exible, (easily) programmable multi-purpose platforms will exhibit a lower cost. A multi-purpose platform not only requires ??exibility, but should also combine a high performance with a low power consumption. To this end, MPSoC devices integrate computer architectural properties of various computing domains. Just like large-scale parallel and distributed systems, they contain multiple heterogeneous processing elements interconnected by a scalable, network-like structure. This helps in achieving scalable high performance. As in most mobile or portable embedded systems, there is a need for low-power operation and real-time behavior. The cost of designing applications is equally important. Indeed, the actual value of future MPSoC devices is not contained within the embedded multiprocessor IC, but in their capability to provide the user of the device with an amount of services or experiences. So from an application viewpoint, MPSoCs are designed to ef??ciently process multimedia content in applications like video players, video conferencing, 3D gaming, augmented reality, etc. Such applications typically require a lot of processing power and a signi??cant amount of memory. To keep up with ever evolving user needs and with new application standards appearing at a fast pace, MPSoC platforms need to be be easily programmable. Application scalability, i.e. the ability to use just enough platform resources according to the user requirements and with respect to the device capabilities is also an important factor. Hence scalability, ??exibility, real-time behavior, a high performance, a low power consumption and, ??nally, programmability are key components in realizing the success of MPSoC platforms. The run-time manager is logically located between the application layer en the platform layer. It has a crucial role in realizing these MPSoC requirements. As it abstracts the platform hardware, it improves platform programmability. By deciding on resource assignment at run-time and based on the performance requirements of the user, the needs of the application and the capabilities of the platform, it contributes to ??exibility, scalability and to low power operation. As it has an arbiter function between different applications, it enables real-time behavior. This thesis details the key components of such an MPSoC run-time manager and provides a proof-of-concept implementation. These key components include application quality management algorithms linked to MPSoC resource management mechanisms and policies, adapted to the provided MPSoC platform services. First, we describe the role, the responsibilities and the boundary conditions of an MPSoC run-time manager in a generic way. This includes a de??nition of the multiprocessor run-time management design space, a description of the run-time manager design trade-offs and a brief discussion on how these trade-offs affect the key MPSoC requirements. This design space de??nition and the trade-offs are illustrated based on ongoing research and on existing commercial and academic multiprocessor run-time management solutions. Consequently, we introduce a fast and ef??cient resource allocation heuristic that considers FPGA fabric properties such as fragmentation. In addition, this thesis introduces a novel task assignment algorithm for handling soft IP cores denoted as hierarchical con??guration. Hierarchical con??guration managed by the run-time manager enables easier application design and increases the run-time spatial mapping freedom. In turn, this improves the performance of the resource assignment algorithm. Furthermore, we introduce run-time task migration components. We detail a new run-time task migration policy closely coupled to the run-time resource assignment algorithm. In addition to detailing a design-environment supported mechanism that enables moving tasks between an ISP and ??ne-grained recon??gurable hardware, we also propose two novel task migration mechanisms tailored to the Network-on-Chip environment. Finally, we propose a novel mechanism for task migration initiation, based on reusing debug registers in modern embedded microprocessors. We propose a reactive on-chip communication management mechanism. We show that by exploiting an injection rate control mechanism it is possible to provide a communication management system capable of providing a soft (reactive) QoS in a NoC. We introduce a novel, platform independent run-time algorithm to perform quality management, i.e. to select an application quality operating point at run-time based on the user requirements and the available platform resources, as reported by the resource manager. This contribution also proposes a novel way to manage the interaction between the quality manager and the resource manager. In order to have a the realistic, reproducible and ??exible run-time manager testbench with respect to applications with multiple quality levels and implementation tradev offs, we have created an input data generation tool denoted Pareto Surfaces For Free (PSFF). The the PSFF tool is, to the best of our knowledge, the ??rst tool that generates multiple realistic application operating points either based on pro??ling information of a real-life application or based on a designer-controlled random generator. Finally, we provide a proof-of-concept demonstrator that combines these concepts and shows how these mechanisms and policies can operate for real-life situations. In addition, we show that the proposed solutions can be integrated into existing platform operating systems

    Resource management for media processing in networked embedded systems : proceedings of a one-day workshop, Eindhoven, March 31, 2005

    Get PDF

    Χρήση μοντέλου παράλληλου προγραμματισμού για σύνθεση αρχιτεκτονικών

    Get PDF
    The problem of automatically generating hardware modules from high level application representations has been at the forefront of EDA research during the last few years. In this Dissertation we introduce a methodology to automatically synthesize hardware accelerators from OpenCL applications. OpenCL is a recent industry supported standard for writing programs that execute on multicore platforms and accelerators such as GPUs. Our methodology maps OpenCL kernels into hardware accelerators based on architectural templates that explicitly decouple computation from memory communication whenever this is possible. The templates can be tuned to provide a wide repertoire of accelerators that meet user performance requirements and FPGA device characteristics. Furthermore a set of high- and low-level compiler optimizations is applied to generate optimized accelerators. Our experimental evaluation shows that the generated accelerators are tuned efficiently to match the applications memory access pattern and computational complexity and to achieve user performance requirements. An important objective of our tool is to expand the FPGA development user base to software engineers thereby expanding the scope of FPGAs beyond the realm of hardware design.To πρόβλημα της αυτόματης δημιουργίας μονάδων υλικό από παραστάσεις υψηλού επιπέδου εφαρμογής είναι στην πρώτη γραμμή της EDA έρευνας κατά τη διάρκεια των τελευταίων ετών. Σε αυτή την διατριβή παρουσιάζουμε μια μεθοδολογία για τη αυτόματη σύνθεση επιταχυντές υλικού από εφαρμογές OpenCL. OpenCL είναι ένα πρόσφατο πρότυπο για τη σύνταξη των προγραμμάτων που εκτελούνται σε πλατφόρμες πολλαπλών πυρήνων και επιταχυντές όπως GPUs. Η μεθοδολογία μας μετατρέπει προγράμματα OpenCL σε επιταχυντές υλικού με βάση αρχιτεκτονικά πρότυπα που ρητά αποσυνδέει τους υπολογισμούς από την μεταφορά δεδομένων από/προς την μνήμη όποτε αυτό είναι δυνατό. Τα πρότυπα μπορούν να συντονιστούν ώστε να παρέχουν ένα ευρύ ρεπερτόριο από επιταχυντές που πληρούν τις απαιτήσεις απόδοσης των χρηστών και τα χαρακτηριστικά της συσκευής FPGA. Επιπλέον ένα σύνολο υψηλής και χαμηλής στάθμης βελτιστοποιήσεις μεταγλωττιστή εφαρμόζεται για να παράγει βελτιστοποιημένα επιταχυντές. Η πειραματική αξιολόγηση δείχνει ότι οι επιταχυντές που δημιουργούνται αποτελεσματικά συντονισμένοι για να ταιριάζει με το μοτίβο πρόσβασης στην μνήμη κάθε εφαρμογής και την υπολογιστική πολυπλοκότητα και να επιτύχουν τις απαιτήσεις απόδοσης των χρηστών. Ένας σημαντικός στόχος του εργαλείου μας είναι η επέκταση της βάσης χρηστών πλατφόρμες FPGA για μηχανικούς λογισμικού ώστε να γίνει ανάπτυξη FPGA συστήματα από μηχανικούς λογισμικού χωρίς την ανάγκη για εμπειρία σχεδιασμού υλικού
    corecore