4,438 research outputs found

    Dynamic Prediction of ICU Mortality Risk Using Domain Adaptation

    Full text link
    Early recognition of risky trajectories during an Intensive Care Unit (ICU) stay is one of the key steps towards improving patient survival. Learning trajectories from physiological signals continuously measured during an ICU stay requires learning time-series features that are robust and discriminative across diverse patient populations. Patients within different ICU populations (referred here as domains) vary by age, conditions and interventions. Thus, mortality prediction models using patient data from a particular ICU population may perform suboptimally in other populations because the features used to train such models have different distributions across the groups. In this paper, we explore domain adaptation strategies in order to learn mortality prediction models that extract and transfer complex temporal features from multivariate time-series ICU data. Features are extracted in a way that the state of the patient in a certain time depends on the previous state. This enables dynamic predictions and creates a mortality risk space that describes the risk of a patient at a particular time. Experiments based on cross-ICU populations reveals that our model outperforms all considered baselines. Gains in terms of AUC range from 4% to 8% for early predictions when compared with a recent state-of-the-art representative for ICU mortality prediction. In particular, models for the Cardiac ICU population achieve AUC numbers as high as 0.88, showing excellent clinical utility for early mortality prediction. Finally, we present an explanation of factors contributing to the possible ICU outcomes, so that our models can be used to complement clinical reasoning

    Generalizability of machine learning models in predicting patient deterioration

    Get PDF
    Predicting patient deterioration in an Intensive Care Unit (ICU) effectively is a critical health care task serving patient health and resource allocation. At times, the task may be highly complex for a physician, yet high-stakes and time-critical decisions need to be made based on it. In this work, we investigate the ability of a set of machine learning models to algorithimically predict future occurrence of in hospital death based on Electronic Health Record (EHR) data of ICU-patients. For one, we will assess the generalizability of the models. We do this by evaluating the models on hospitals the data of which has not been considered when training the models. For another, we consider the case in which we have access to some EHR data for the patients treated at a hospital of interest. In this setting, we assess how EHR data from other hospitals can be used in the optimal way to improve the prediction accuracy. This study is important for the deployment and integration of such predictive models in practice, e.g., for real-time algorithmic deterioration prediction for clinical decision support. In order to address these questions, we use the eICU collaborative research database, which is a database containing EHRs of patients treated at a heterogeneous collection of hospitals in the United States. In this work, we use the patient demographics, vital signs and Glasgow coma score as the predictors. We devise and describe three computational experiments to test the generalization in different ways. The used models are the random forest, gradient boosted trees and long short-term memory network. In our first experiment concerning the generalization, we show that, with the chosen limited set of predictors, the models generalize reasonably across hospitals but that only a small data mismatch is observed. Moreover, with this setting, our second experiment shows that the model performance does not significantly improve when increasing the heterogeneity of the training set. Given these observations, our third experiment shows tha

    Length of Stay prediction for Hospital Management using Domain Adaptation

    Full text link
    Inpatient length of stay (LoS) is an important managerial metric which if known in advance can be used to efficiently plan admissions, allocate resources and improve care. Using historical patient data and machine learning techniques, LoS prediction models can be developed. Ethically, these models can not be used for patient discharge in lieu of unit heads but are of utmost necessity for hospital management systems in charge of effective hospital planning. Therefore, the design of the prediction system should be adapted to work in a true hospital setting. In this study, we predict early hospital LoS at the granular level of admission units by applying domain adaptation to leverage information learned from a potential source domain. Time-varying data from 110,079 and 60,492 patient stays to 8 and 9 intensive care units were respectively extracted from eICU-CRD and MIMIC-IV. These were fed into a Long-Short Term Memory and a Fully connected network to train a source domain model, the weights of which were transferred either partially or fully to initiate training in target domains. Shapley Additive exPlanations (SHAP) algorithms were used to study the effect of weight transfer on model explanability. Compared to the benchmark, the proposed weight transfer model showed statistically significant gains in prediction accuracy (between 1% and 5%) as well as computation time (up to 2hrs) for some target domains. The proposed method thus provides an adapted clinical decision support system for hospital management that can ease processes of data access via ethical committee, computation infrastructures and time

    Machine Learning Framework for Real-World Electronic Health Records Regarding Missingness, Interpretability, and Fairness

    Get PDF
    Machine learning (ML) and deep learning (DL) techniques have shown promising results in healthcare applications using Electronic Health Records (EHRs) data. However, their adoption in real-world healthcare settings is hindered by three major challenges. Firstly, real-world EHR data typically contains numerous missing values. Secondly, traditional ML/DL models are typically considered black-boxes, whereas interpretability is required for real-world healthcare applications. Finally, differences in data distributions may lead to unfairness and performance disparities, particularly in subpopulations. This dissertation proposes methods to address missing data, interpretability, and fairness issues. The first work proposes an ensemble prediction framework for EHR data with large missing rates using multiple subsets with lower missing rates. The second method introduces the integration of medical knowledge graphs and double attention mechanism with the long short-term memory (LSTM) model to enhance interpretability by providing knowledge-based model interpretation. The third method develops an LSTM variant that integrates medical knowledge graphs and additional time-aware gates to handle multi-variable temporal missing issues and interpretability concerns. Finally, a transformer-based model is proposed to learn unbiased and fair representations of diverse subpopulations using domain classifiers and three attention mechanisms

    Generalisability of deep learning-based early warning in the intensive care unit: a retrospective empirical evaluation

    Full text link
    Deep learning (DL) can aid doctors in detecting worsening patient states early, affording them time to react and prevent bad outcomes. While DL-based early warning models usually work well in the hospitals they were trained for, they tend to be less reliable when applied at new hospitals. This makes it difficult to deploy them at scale. Using carefully harmonised intensive care data from four data sources across Europe and the US (totalling 334,812 stays), we systematically assessed the reliability of DL models for three common adverse events: death, acute kidney injury (AKI), and sepsis. We tested whether using more than one data source and/or explicitly optimising for generalisability during training improves model performance at new hospitals. We found that models achieved high AUROC for mortality (0.838-0.869), AKI (0.823-0.866), and sepsis (0.749-0.824) at the training hospital. As expected, performance dropped at new hospitals, sometimes by as much as -0.200. Using more than one data source for training mitigated the performance drop, with multi-source models performing roughly on par with the best single-source model. This suggests that as data from more hospitals become available for training, model robustness is likely to increase, lower-bounding robustness with the performance of the most applicable data source in the training data. Dedicated methods promoting generalisability did not noticeably improve performance in our experiments

    Continuous and automatic mortality risk prediction using vital signs in the intensive care unit: a hybrid neural network approach

    Get PDF
    Mortality risk prediction can greatly improve the utilization of resources in intensive care units (ICUs). Existing schemes in ICUs today require laborious manual input of many complex parameters. In this work, we present a scheme that uses variations in vital signs over a 24-h period to make mortality risk assessments for 3-day, 7-day, and 14-day windows. We develop a hybrid neural network model that combines convolutional (CNN) layers with bidirectional long short-term memory (BiLSTM) to predict mortality from statistics describing the variation of heart rate, blood pressure, respiratory rate, blood oxygen levels, and temperature. Our scheme performs strongly compared to state-of-the-art schemes in the literature for mortality prediction, with our highest-performing model achieving an area under the receiver-operator curve of 0.884. We conclude that the use of a hybrid CNN-BiLSTM network is highly effective in determining mortality risk for the 3, 7, and 14 day windows from vital signs. As vital signs are routinely recorded, in many cases automatically, our scheme could be implemented such that highly accurate mortality risk could be predicted continuously and automatically, reducing the burden on healthcare providers and improving patient outcomes
    corecore