17,603 research outputs found

    Suboptimal solutions to network team optimization problems

    Get PDF
    Smoothness of the solutions to network team optimization problems with statistical information structure is investigated. Suboptimal solutions expressed as linear combinations of elements from sets of basis functions containing adjustable parameters are considered. Estimates of their accuracy are derived, for basis functions represented by sinusoids with variable frequencies and phases and Gaussians with variable centers and widthss

    Lifelong Multi-Agent Path Finding in Large-Scale Warehouses

    Full text link
    Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents to their goal locations without collisions. In this paper, we study the lifelong variant of MAPF, where agents are constantly engaged with new goal locations, such as in large-scale automated warehouses. We propose a new framework Rolling-Horizon Collision Resolution (RHCR) for solving lifelong MAPF by decomposing the problem into a sequence of Windowed MAPF instances, where a Windowed MAPF solver resolves collisions among the paths of the agents only within a bounded time horizon and ignores collisions beyond it. RHCR is particularly well suited to generating pliable plans that adapt to continually arriving new goal locations. We empirically evaluate RHCR with a variety of MAPF solvers and show that it can produce high-quality solutions for up to 1,000 agents (= 38.9\% of the empty cells on the map) for simulated warehouse instances, significantly outperforming existing work.Comment: Published at AAAI 202

    Multi-agent pathfinding for unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs), commonly known as drones, have become more and more prevalent in recent years. In particular, governmental organizations and companies around the world are starting to research how UAVs can be used to perform tasks such as package deliver, disaster investigation and surveillance of key assets such as pipelines, railroads and bridges. NASA is currently in the early stages of developing an air traffic control system specifically designed to manage UAV operations in low-altitude airspace. Companies such as Amazon and Rakuten are testing large-scale drone deliver services in the USA and Japan. To perform these tasks, safe and conflict-free routes for concurrently operating UAVs must be found. This can be done using multi-agent pathfinding (mapf) algorithms, although the correct choice of algorithms is not clear. This is because many state of the art mapf algorithms have only been tested in 2D space in maps with many obstacles, while UAVs operate in 3D space in open maps with few obstacles. In addition, when an unexpected event occurs in the airspace and UAVs are forced to deviate from their original routes while inflight, new conflict-free routes must be found. Planning for these unexpected events is commonly known as contingency planning. With manned aircraft, contingency plans can be created in advance or on a case-by-case basis while inflight. The scale at which UAVs operate, combined with the fact that unexpected events may occur anywhere at any time make both advanced planning and planning on a case-by-case basis impossible. Thus, a new approach is needed. Online multi-agent pathfinding (online mapf) looks to be a promising solution. Online mapf utilizes traditional mapf algorithms to perform path planning in real-time. That is, new routes for UAVs are found while inflight. The primary contribution of this thesis is to present one possible approach to UAV contingency planning using online multi-agent pathfinding algorithms, which can be used as a baseline for future research and development. It also provides an in-depth overview and analysis of offline mapf algorithms with the goal of determining which ones are likely to perform best when applied to UAVs. Finally, to further this same goal, a few different mapf algorithms are experimentally tested and analyzed

    Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control

    Get PDF
    This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and potentially nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a generic, spatial branch-and-bound algorithm. A new operation, called lifting, is introduced, which refines the control parameterization via a Gram-Schmidt orthogonalization process, while simultaneously eliminating control subregions that are either infeasible or that provably cannot contain any global optima. Conditions are given under which the image of the control parameterization error in the state space contracts exponentially as the parameterization order is increased, thereby making the lifting operation efficient. A computational technique based on ellipsoidal calculus is also developed that satisfies these conditions. The practical applicability of branch-and-lift is illustrated in a numerical example. © 2013 Springer Science+Business Media New York
    corecore