780 research outputs found

    CLOUD RESOURCE MANAGEMENT USING A HIERARCHICAL DECENTRALIZED FRAMEWORK

    Get PDF

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy efficiency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    Modeling the virtual machine allocation problem

    Get PDF
    Finding the right allocation of virtual machines (VM) in cloud data centers is one of the key optimization problems in cloud computing. Accordingly, many algorithms have been proposed for the problem. However, lacking a single, generally accepted formulation of the VM allocation problem, there are many subtle differences in the problem formulations that these algorithms address; moreover, in several cases, the exact problem formu- lation is not even defined explicitly. Hence in this paper, we present a comprehensive generic model of the VM allocation problem. We also show how the often-investigated problem variants fit into this general model

    Allocation of Virtual Machines in Cloud Data Centers - A Survey of Problem Models and Optimization Algorithms

    Get PDF
    Data centers in public, private, and hybrid cloud settings make it possible to provision virtual machines (VMs) with unprecedented flexibility. However, purchasing, operating, and maintaining the underlying physical resources incurs significant monetary costs and also environmental impact. Therefore, cloud providers must optimize the usage of physical resources by a careful allocation of VMs to hosts, continuously balancing between the conflicting requirements on performance and operational costs. In recent years, several algorithms have been proposed for this important optimization problem. Unfortunately, the proposed approaches are hardly comparable because of subtle differences in the used problem models. This paper surveys the used problem formulations and optimization algorithms, highlighting their strengths and limitations, also pointing out the areas that need further research in the future

    SLO-aware Colocation of Data Center Tasks Based on Instantaneous Processor Requirements

    Full text link
    In a cloud data center, a single physical machine simultaneously executes dozens of highly heterogeneous tasks. Such colocation results in more efficient utilization of machines, but, when tasks' requirements exceed available resources, some of the tasks might be throttled down or preempted. We analyze version 2.1 of the Google cluster trace that shows short-term (1 second) task CPU usage. Contrary to the assumptions taken by many theoretical studies, we demonstrate that the empirical distributions do not follow any single distribution. However, high percentiles of the total processor usage (summed over at least 10 tasks) can be reasonably estimated by the Gaussian distribution. We use this result for a probabilistic fit test, called the Gaussian Percentile Approximation (GPA), for standard bin-packing algorithms. To check whether a new task will fit into a machine, GPA checks whether the resulting distribution's percentile corresponding to the requested service level objective, SLO is still below the machine's capacity. In our simulation experiments, GPA resulted in colocations exceeding the machines' capacity with a frequency similar to the requested SLO.Comment: Author's version of a paper published in ACM SoCC'1
    corecore