241 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Sensor Modalities and Fusion for Robust Indoor Localisation

    Get PDF

    Generalizable Deep-Learning-Based Wireless Indoor Localization

    Get PDF
    The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To address the generalizability challenge faced by conventionally trained deep learning localization models, we propose the use of meta-learning-based approaches. By leveraging meta-learning, we aim to improve the models\u27 ability to adapt to new environments without extensive retraining. Additionally, since meta-learning algorithms typically require diverse datasets from various scenarios, which can be difficult to collect specifically for localization tasks, we introduce a novel meta-learning algorithm called TB-MAML (Task Biased Model Agnostic Meta Learning). This algorithm is specifically designed to enhance generalization when dealing with limited datasets. Finally, we conduct an evaluation to compare the performance of TB-MAML-based localization with conventionally trained localization models and other meta-learning algorithms in the context of indoor localization

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    An Investigation of Indoor Positioning Systems and their Applications

    Get PDF
    PhDActivities of Daily Living (ADL) are important indicators of both cognitive and physical well-being in healthy and ill humans. There is a range of methods to recognise ADLs, each with its own limitations. The focus of this research was on sensing location-driven activities, in which ADLs are derived from location sensed using Radio Frequency (RF, e.g., WiFi or BLE), Magnetic Field (MF) and light (e.g., Lidar) measurements in three different environments. This research discovered that different environments can have different constraints and requirements. It investigated how to improve the positioning accuracy and hence how to improve the ADL recognition accuracy. There are several challenges that need to be addressed in order to do this. First, RF location fingerprinting is affected by the heterogeneity smartphones and their orientation with respect to transmitters, increasing the location determination error. To solve this, a novel Received Signal Strength Indication (RSSI) ranking based location fingerprinting methods that use Kendall Tau Correlation Coefficient (KTCC) and Convolutional Neural Networks (CNN) are proposed to correlate a signal position to pre-defined Reference Points (RPs) or fingerprints, more accurately, The accuracy has increased by up to 25.8% when compared to using Euclidean Distance (ED) based Weighted K-Nearest Neighbours Algorithm (WKNN). Second, the use of MF measurements as fingerprints can overcome some additional RF fingerprinting challenges, as MF measurements are far more invariant to static and dynamic physical objects that affect RF transmissions. Hence, a novel fast path matching data algorithm for an MF sensor combined with an Inertial Measurement Unit (IMU) to determine direction was researched and developed. It can achieve an average of 1.72 m positioning accuracy when the user walks far fewer (5) steps. Third, a device-free or off-body novel location-driven ADL method based upon 2D Lidar was investigated. An innovative method for recognising daily activities using a Seq2Seq model to analyse location data from a low-cost rotating 2D Lidar is proposed. It provides an accuracy of 88% when recognising 17 targeted ADLs. These proposed methods in this thesis have been validated in real environments.Chinese Scholarship Counci

    Analysis of synchronous localization systems for UAVs urban applications

    Get PDF
    [EN] Unmanned-Aerial-Vehicles (UAVs) represent an active research topic over multiple fields for performing inspection, delivery and surveillance applications among other operations. However, achieving the utmost efficiency requires drones to perform these tasks without the need of human intervention, which demands a robust and accurate localization system for achieving a safe and efficient autonomous navigation. Nevertheless, currently used satellite-based localization systems like GPS are insufficient for high-precision applications, especially in harsh scenarios like indoor and deep urban environments. In these contexts, Local Positioning Systems (LPS) have been widely proposed for satisfying the localization requirements of these vehicles. However, the performance of LPS is highly dependent on the actual localization architecture and the spatial disposition of the deployed sensor distribution. Therefore, before the deployment of an extensive localization network, an analysis regarding localization architecture and sensor distribution should be taken into consideration for the task at hand. Nonetheless, no actual study is proposed either for comparing localization architectures or for attaining a solution for the Node Location Problem (NLP), a problem of NP-Hard complexity. Therefore, in this paper, we propose a comparison among synchronous LPS for determining the most suited system for localizing UAVs over urban scenarios. We employ the Cràmer–Rao-Bound (CRB) for evaluating the performance of each localization system, based on the provided error characterization of each synchronous architecture. Furthermore, in order to attain the optimal sensor distribution for each architecture, a Black-Widow-Optimization (BWO) algorithm is devised for the NLP and the application at hand. The results obtained denote the effectiveness of the devised technique and recommend the implementation of Time Difference Of Arrival (TDOA) over Time of Arrival (TOA) systems, attaining up to 47% less localization uncertainty due to the unnecessary synchronization of the target clock with the architecture sensors in the TDOA architecture.S

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions
    • …
    corecore