35,820 research outputs found

    Fundamental structures of dynamic social networks

    Get PDF
    Social systems are in a constant state of flux with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding spreading of influence or diseases, formation of friendships, and the productivity of teams. While there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the micro-dynamics of social networks. Here we explore the dynamic social network of a densely-connected population of approximately 1000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geo-location, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-minute time slices we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores are preceded by coordination behavior in the communication networks, and demonstrating that social behavior can be predicted with high precision.Comment: Main Manuscript: 16 pages, 4 figures. Supplementary Information: 39 pages, 34 figure

    Large-Scale Distributed Internet-based Discovery Mechanism for Dynamic Spectrum Allocation

    Full text link
    Scarcity of frequencies and the demand for more bandwidth is likely to increase the need for devices that utilize the available frequencies more efficiently. Radios must be able to dynamically find other users of the frequency bands and adapt so that they are not interfered, even if they use different radio protocols. As transmitters far away may cause as much interference as a transmitter located nearby, this mechanism can not be based on location alone. Central databases can be used for this purpose, but require expensive infrastructure and planning to scale. In this paper, we propose a decentralized protocol and architecture for discovering radio devices over the Internet. The protocol has low resource requirements, making it suitable for implementation on limited platforms. We evaluate the protocol through simulation in network topologies with up to 2.3 million nodes, including topologies generated from population patterns in Norway. The protocol has also been implemented as proof-of-concept in real Wi-Fi routers.Comment: Accepted for publication at IEEE DySPAN 201
    • …
    corecore