823 research outputs found

    SLAM research for port AGV based on 2D LIDAR

    Get PDF
    With the increase in international trade, the transshipment of goods at international container ports is very busy. The AGV (Automated Guided Vehicle) has been used as a new generation of automated container horizontal transport equipment. The AGV is an automated unmanned vehicle that can work 24 hours a day, increasing productivity and reducing labor costs compared to using container trucks. The ability to obtain information about the surrounding environment is a prerequisite for the AGV to automatically complete tasks in the port area. At present, the method of AGV based on RFID tag positioning and navigation has a problem of excessive cost. This dissertation has carried out a research on applying light detection and ranging (LIDAR) simultaneous localization and mapping (SLAM) technology to port AGV. In this master's thesis, a mobile test platform based on a laser range finder is developed to scan 360-degree environmental information (distance and angle) centered on the LIDAR and upload the information to a real-time database to generate surrounding environmental maps, and the obstacle avoidance strategy was developed based on the acquired information. The effectiveness of the platform was verified by the experiments from multiple scenarios. Then based on the first platform, another experimental platform with encoder and IMU sensor was developed. In this platform, the functionality of SLAM is enabled by the GMapping algorithm and the installation of the encoder and IMU sensor. Based on the established environment SLAM map, the path planning and obstacle avoidance functions of the platform were realized.Com o aumento do comércio internacional, o transbordo de mercadorias em portos internacionais de contentores é muito movimentado. O AGV (“Automated Guided Vehicle”) foi usado como uma nova geração de equipamentos para transporte horizontal de contentores de forma automatizada. O AGV é um veículo não tripulado automatizado que pode funcionar 24 horas por dia, aumentando a produtividade e reduzindo os custos de mão-de-obra em comparação com o uso de camiões porta-contentores. A capacidade de obter informações sobre o ambiente circundante é um pré-requisito para o AGV concluir automaticamente tarefas na área portuária. Atualmente, o método de AGV baseado no posicionamento e navegação de etiquetas RFID apresenta um problema de custo excessivo. Nesta dissertação foi realizada uma pesquisa sobre a aplicação da tecnologia LIDAR de localização e mapeamento simultâneo (SLAM) num AGV. Uma plataforma de teste móvel baseada num telémetro a laser é desenvolvida para examinar o ambiente em redor em 360 graus (distância e ângulo), centrado no LIDAR, e fazer upload da informação para uma base de dados em tempo real para gerar um mapa do ambiente em redor. Uma estratégia de prevenção de obstáculos foi também desenvolvida com base nas informações adquiridas. A eficácia da plataforma foi verificada através da realização de testes com vários cenários e obstáculos. Por fim, com base na primeira plataforma, uma outra plataforma experimental com codificador e sensor IMU foi também desenvolvida. Nesta plataforma, a funcionalidade do SLAM é ativada pelo algoritmo GMapping e pela instalação do codificador e do sensor IMU. Com base no estabelecimento do ambiente circundante SLAM, foram realizadas as funções de planeamento de trajetória e prevenção de obstáculos pela plataforma

    A comprehensive obstacle avoidance system of mobile robots using an adaptive threshold clustering and the morphin algorithm

    Get PDF
    To solve the problem of obstacle avoidance for a mobile robot in unknown environment, a comprehensive obstacle avoidance system (called ATCM system) is developed. It integrates obstacle detection, obstacle classification, collision prediction and obstacle avoidance. Especially, an Adaptive-Threshold Clustering algorithm is developed to detect obstacles, and the Morphin algorithm is applied for path planning when the robot predicts a collision ahead. A dynamic circular window is set to continuously scan the surrounding environment of the robot during the task period. The simulation results show that the obstacle avoidance system enables robot to avoid any static and dynamic obstacles effectively

    Robot Mapping and Navigation by Fusing Sensory Information

    Get PDF

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    A Comprehensive Review on Autonomous Navigation

    Full text link
    The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE
    corecore