86 research outputs found

    Object Closure and Manipulation by Multiple Cooperating Mobile Robots

    Get PDF
    We address the manipulation of planar objects by multiple cooperating mobile robots using the concept of Object Closure. In contrast to Form or Force Closure, Object Closure is a condition under which the object is trapped so that there is no feasible path for the object from the given position to any position that is beyond a specified threshold distance. Once Object Closure is achieved, the robots can cooperatively drag or flow the trapped object to the desired goal. In this paper, we define object closure and develop a set of decentralized algorithms that allow the robots to achieve and maintain object closure. We show how simple, first-order, potential field based controllers can be used to implement multirobot manipulation tasks

    Cooperative Object Transport in Multi-robot Systems:A Review of the State-of-the-Art

    Get PDF
    In recent years, there has been a growing interest in designing multi-robot systems (hereafter MRSs) to provide cost effective, fault-tolerant and reliable solutions to a variety of automated applications. Here, we review recent advancements in MRSs specifically designed for cooperative object transport, which requires the members of MRSs to coordinate their actions to transport objects from a starting position to a final destination. To achieve cooperative object transport, a wide range of transport, coordination and control strategies have been proposed. Our goal is to provide a comprehensive summary for this relatively heterogeneous and fast-growing body of scientific literature. While distilling the information, we purposefully avoid using hierarchical dichotomies, which have been traditionally used in the field of MRSs. Instead, we employ a coarse-grain approach by classifying each study based on the transport strategy used; pushing-only, grasping and caging. We identify key design constraints that may be shared among these studies despite considerable differences in their design methods. In the end, we discuss several open challenges and possible directions for future work to improve the performance of the current MRSs. Overall, we hope to increase the visibility and accessibility of the excellent studies in the field and provide a framework that helps the reader to navigate through them more effectivelypublishersversionPeer reviewe

    対象物体と指配置のコンフィグレーション空間を用いた不確かさを扱える効率的なケージング計画

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    Communication for Teams of Networked Robots

    Get PDF
    There are a large class of problems, from search and rescue to environmental monitoring, that can benefit from teams of mobile robots in environments where there is no existing infrastructure for inter-agent communication. We seek to address the problems necessary for a team of small, low-power, low-cost robots to deploy in such a way that they can dynamically provide their own multi-hop communication network. To do so, we formulate a situational awareness problem statement that specifies both the physical task and end-to-end communication rates that must be maintained. In pursuit of a solution to this problem, we address topics ranging from the modeling of point-to-point wireless communication to mobility control for connectivity maintenance. Since our focus is on developing solutions to these problems that can be experimentally verified, we also detail the design and implantation of a decentralized testbed for multi-robot research. Experiments on this testbed allow us to determine data-driven models for point-to-point wireless channel prediction, test relative signal-strength-based localization methods, and to verify that our algorithms for mobility control maintain the desired instantaneous rates when routing through the wireless network. The tools we develop are integral to the fielding of teams of robots with robust wireless network capabilities

    Goal Based Human Swarm Interaction for Collaborative Transport

    Get PDF
    Human-swarm interaction is an important milestone for the introduction of swarm-intelligence based solutions into real application scenarios. One of the main hurdles towards this goal is the creation of suitable interfaces for humans to convey the correct intent to multiple robots. As the size of the swarm increases, the complexity of dealing with explicit commands for individual robots becomes intractable. This brings a great challenge for the developer or the operator to drive robots to finish even the most basic tasks. In our work, we consider a different approach that humans specify only the desired goal rather than issuing individual commands necessary to obtain this task. We explore this approach in a collaborative transport scenario, where the user chooses the target position of an object, and a group of robots moves it by adapting themselves to the environment. The main outcome of this thesis is the design of integration of a collaborative transport behavior of swarm robots and an augmented reality human interface. We implemented an augmented reality (AR) application in which a virtual object is displayed overlapped on a detected target object. Users can manipulate the virtual object to generate the goal configuration for the object. The designed centralized controller translate the goal position to the robots and synchronize the state transitions. The whole system is tested on Khepera IV robots through the integration of Vicon system and ARGoS simulator

    Cooperation in Swarms of Robots without Communication

    Get PDF
    Swarm robotics aims to use a large group of relatively simple robots to solve tasks that can hardly be achieved by a single robot in the group. Compared to single robot systems with increased capability, a swarm robotic system may have advantages in robustness, flexibility and scalability. However, designing cooperative behaviors for a swarm robotic system is a challenging problem, especially when the robots may not have communication capabilities and thus only know local information. For a swarm of miniature mobile robots that cannot communicate explicitly, this thesis studies fully decentralized solutions of two problems. For the problem of cooperative transport, the thesis presents a strategy to push an object that is large enough to occlude the robots' perception of the goal of the transportation. For the problem of pattern formation, the thesis investigates algorithms based on the Brazil nut effect that can organize the swarm of robots into an annular formation. These problems are studied using physics-based computer simulations as well as experimental implementations based on the e-puck robotic platform. The simplicity of the solutions make them suitable for applications that require the individual robots to be as simple as possible. Example application scenarios could be micro robot swarms working in the human body

    Grasping and Assembling with Modular Robots

    Get PDF
    A wide variety of problems, from manufacturing to disaster response and space exploration, can benefit from robotic systems that can firmly grasp objects or assemble various structures, particularly in difficult, dangerous environments. In this thesis, we study the two problems, robotic grasping and assembly, with a modular robotic approach that can facilitate the problems with versatility and robustness. First, this thesis develops a theoretical framework for grasping objects with customized effectors that have curved contact surfaces, with applications to modular robots. We present a collection of grasps and cages that can effectively restrain the mobility of a wide range of objects including polyhedra. Each of the grasps or cages is formed by at most three effectors. A stable grasp is obtained by simple motion planning and control. Based on the theory, we create a robotic system comprised of a modular manipulator equipped with customized end-effectors and a software suite for planning and control of the manipulator. Second, this thesis presents efficient assembly planning algorithms for constructing planar target structures collectively with a collection of homogeneous mobile modular robots. The algorithms are provably correct and address arbitrary target structures that may include internal holes. The resultant assembly plan supports parallel assembly and guarantees easy accessibility in the sense that a robot does not have to pass through a narrow gap while approaching its target position. Finally, we extend the algorithms to address various symmetric patterns formed by a collection of congruent rectangles on the plane. The basic ideas in this thesis have broad applications to manufacturing (restraint), humanitarian missions (forming airfields on the high seas), and service robotics (grasping and manipulation)

    TacMMs: Tactile Mobile Manipulators for Warehouse Automation

    Full text link
    Multi-robot platforms are playing an increasingly important role in warehouse automation for efficient goods transport. This paper proposes a novel customization of a multi-robot system, called Tactile Mobile Manipulators (TacMMs). Each TacMM integrates a soft optical tactile sensor and a mobile robot with a load-lifting mechanism, enabling cooperative transportation in tasks requiring coordinated physical interaction. More specifically, we mount the TacTip (biomimetic optical tactile sensor) on the Distributed Organisation and Transport System (DOTS) mobile robot. The tactile information then helps the mobile robots adjust the relative robot-object pose, thereby increasing the efficiency of load-lifting tasks. This study compares the performance of using two TacMMs with tactile perception with traditional vision-based pose adjustment for load-lifting. The results show that the average success rate of the TacMMs (66%) is improved over a purely visual-based method (34%), with a larger improvement when the mass of the load was non-uniformly distributed. Although this initial study considers two TacMMs, we expect the benefits of tactile perception to extend to multiple mobile robots. Website: https://sites.google.com/view/tacmmsComment: 8 pages, accepted in IEEE Robotics and Automation Letters, 19 June 202

    물체 수송을 위한 협업 로봇의 행동 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 이범희.This dissertation presents two cooperative object transportation techniques according to the characteristics of objects: passive and active. The passive object is a typical object, which cannot communicate with and detect other robots. The active object, however, has abilities to communicate with robots and can measure the distance from other robots using proximity sensors. Typical areas of research in cooperative object transportation include grasping, pushing, and caging techniques, but these require precise grasping behaviors, iterative motion correction according to the object pose, and the real-time acquisition of the object shape, respectively. For solving these problems, we propose two new object transportation techniques by considering the properties of objects. First, this dissertation presents a multi-agent behavior to cooperatively transport an active object using a sound signal and interactive communication. We first developed a sound localization method, which estimates the sound source from an active object by using three microphone sensors. Next, since the active object cannot be recalled by only a single robot, the robots organized a heterogeneous team by themselves with a pusher, a puller, and a supervisor. This self-organized team succeeded in moving the active object to a goal using the cooperation of its neighboring robots and interactive communication between the object and robots. Second, this dissertation presents a new cooperative passive object transportation technique using cyclic shift motion. The proposed technique does not need to consider the shape or the pose of objects, and equipped tools are also unnecessary for object transportation. Multiple robots create a parallel row formation using a virtual electric dipole field and then push multiple objects into the formation. This parallel row is extended to the goal using cyclic motion by the robots. The above processes are decentralized and activated based on the finite state machine of each robot. Simulations and practical experiments are presented to verify the proposed techniques.Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Related Work 4 1.2.1 The Categories of Object Transportation Techniques 4 1.2.2 Sound Localization Techniques for Active Object Transportation 7 1.3 Contributions 8 1.4 Organization 10 Chapter 2 Object Transportation Problem 11 2.1 Passive Object versus Active Object 11 2.2 Problem Formulation 13 2.3 Assumptions 13 Chapter 3 Active Object Transportation using a Sound Signal and Interactive Communication 15 3.1 Overview of Active Object Transportation 16 3.2 Sound Vector Generation using Triple Microphones 17 3.2.1 Sound Isocontour Generation using ILD 18 3.2.2 Sound Circle Generation using Inverse-square Law 21 3.2.3 Sound Vector Generation 22 3.3 Cooperative Control Method using Interactive Communication 25 3.3.1 Role Assignment of Multi-robot Team 25 3.3.2 Position Assignment of Multi-robot Team 26 3.3.3 Transportation Process of an Active Object 29 Chapter 4 Passive Object Transportation using Cyclic Shift Motion 33 4.1 Overview of Passive Object Transportation 34 4.2 Multi-robot Team Organization 35 4.3 Row Formation Generation using Multiple Robots 37 4.3.1 Cyclic Shift Motion 37 4.3.2 Path Generation using Virtual Electric Dipole Field 39 4.3.3 Path Following using Bang-bang Controller 42 4.4 Multi-object Transportation by a Decentralized Multi-robot Team 45 4.4.1 Information Acquisition Methods for Finite State Machine 45 4.4.2 Finite State Machines (FSMs) 48 4.4.2.1 The FSM of Guider Robots 49 4.4.2.2 The FSM of a Pusher Robot 52 4.4.2.3 The FSM of a Leader Robot 54 4.4.3 Object Transportation Process 55 4.4.4 Formation Constraints for Curved Transportation Path 57 Chapter 5 Simulation Results 61 5.1 Simulation Environment 61 5.2 Simulation Result of Passive Object Transportation 63 5.3 Comparison Results with Other Passive Object Transportation Techniques 69 5.3.1 Simulation Result of Leader-Follower Technique 70 5.3.2 Simulation Result of Caging Technique 72 Chapter 6 Practical Experiments 77 6.1 Experimental Environment 77 6.2 Experimental Results of Active Object Transportation 81 6.2.1 Experimental Result of the SV Estimation 81 6.2.2 Experimental Result of Active Object Transportation 82 6.3 Experimental Results of Passive Object Transportation 86 6.3.1 Small-object Transportation with Straight Path 86 6.3.2 Small-object Transportation with Curved Path 91 6.3.3 Large-object Transportation 93 6.4 Comparison Result with Caging Technique 95 Chapter 7 Discussion 96 Chapter 8 Conclusions 99 Appendix A: The Approaching Phase of Passive Object Transportation 101 A.1 Approaching Phase 101 A.2 Experimental Result of Approaching Phase 107 Appendix B: Object Transportation in a Static Environment 109 B.1 Overview 109 B.2 Object Transportation Problem in a Static Environment 111 B.3 Multi-object Transportation using Hybrid System 112 B.4 New Finite State Machines 113 B.4.1 The States of Guider Robots 114 B.4.2 The States of a Pusher Robot 115 B.4.3 The States of a Leader Robot 116 B.5 Simulation Results 118 B.5.1 Simulation Result: An Obstacle 118 B.5.2 Simulation Result: Two Obstacles 120 B.6 Practical Experiment 122 Bibliography 124Docto
    corecore