2,559 research outputs found

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Development of FPGA based Standalone Tunable Fuzzy Logic Controllers

    Get PDF
    Soft computing techniques differ from conventional (hard) computing, in that unlike hard computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation. In effect, the role model for soft computing is the human mind and its ability to address day-to-day problems. The principal constituents of Soft Computing (SC) are Fuzzy Logic (FL), Evolutionary Computation (EC), Machine Learning (ML) and Artificial Neural Networks (ANNs). This thesis presents a generic hardware architecture for type-I and type-II standalone tunable Fuzzy Logic Controllers (FLCs) in Field Programmable Gate Array (FPGA). The designed FLC system can be remotely configured or tuned according to expert operated knowledge and deployed in different applications to replace traditional Proportional Integral Derivative (PID) controllers. This re-configurability is added as a feature to existing FLCs in literature. The FLC parameters which are needed for tuning purpose are mainly input range, output range, number of inputs, number of outputs, the parameters of the membership functions like slope and center points, and an If-Else rule base for the fuzzy inference process. Online tuning enables users to change these FLC parameters in real-time and eliminate repeated hardware programming whenever there is a need to change. Realization of these systems in real-time is difficult as the computational complexity increases exponentially with an increase in the number of inputs. Hence, the challenge lies in reducing the rule base significantly such that the inference time and the throughput time is perceivable for real-time applications. To achieve these objectives, Modified Rule Active 2 Overlap Membership Function (MRA2-OMF), Modified Rule Active 3 Overlap Membership Function (MRA3-OMF), Modified Rule Active 4 Overlap Membership Function (MRA4-OMF), and Genetic Algorithm (GA) base rule optimization methods are proposed and implemented. These methods reduce the effective rules without compromising system accuracy and improve the cycle time in terms of Fuzzy Logic Inferences Per Second (FLIPS). In the proposed system architecture, the FLC is segmented into three independent modules, fuzzifier, inference engine with rule base, and defuzzifier. Fuzzy systems employ fuzzifier to convert the real world crisp input into the fuzzy output. In type 2 fuzzy systems there are two fuzzifications happen simultaneously from upper and lower membership functions (UMF and LMF) with subtractions and divisions. Non-restoring, very high radix, and newton raphson approximation are most widely used division algorithms in hardware implementations. However, these prevalent methods have a cost of more latency. In order to overcome this problem, a successive approximation division algorithm based type 2 fuzzifier is introduced. It has been observed that successive approximation based fuzzifier computation is faster than the other type 2 fuzzifier. A hardware-software co-design is established on Virtex 5 LX110T FPGA board. The MATLAB Graphical User Interface (GUI) acquires the fuzzy (type 1 or type 2) parameters from users and a Universal Asynchronous Receiver/Transmitter (UART) is dedicated to data communication between the hardware and the fuzzy toolbox. This GUI is provided to initiate control, input, rule transfer, and then to observe the crisp output on the computer. A proposed method which can support canonical fuzzy IF-THEN rules, which includes special cases of the fuzzy rule base is included in Digital Fuzzy Logic Controller (DFLC) architecture. For this purpose, a mealy state machine is incorporated into the design. The proposed FLCs are implemented on Xilinx Virtex-5 LX110T. DFLC peripheral integration with Micro-Blaze (MB) processor through Processor Logic Bus (PLB) is established for Intellectual Property (IP) core validation. The performance of the proposed systems are compared to Fuzzy Toolbox of MATLAB. Analysis of these designs is carried out by using Hardware-In-Loop (HIL) test to control various plant models in MATLAB/Simulink environments

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Hybrid Linux System Modeling with Mixed-Level Simulation

    Get PDF
    Dissertação de mestrado integrado em Engenharia Electrónica Industrial e ComputadoresWe live in a world where the need for computer-based systems with better performances is growing fast, and part of these systems are embedded systems. This kind of systems are everywhere around us, and we use them everyday even without noticing. Nevertheless, there are issues related to embedded systems in what comes to real-time requirements, because the failure of such systems can be harmful to the user or its environment. For this reason, a common technique to meet real-time requirements in difficult scenarios is accelerating software applications by using parallelization techniques and dedicated hardware components. This dissertations’ goal is to adopt a methodology of hardware-software co-design aided by co-simulation, making the design flow more efficient and reliable. An isolated validation does not guarantee integral system functionality, but the use of an integrated co-simulation environment allows detecting system problems before moving to the physical implementation. In this dissertation, an integrated co-simulation environment will be developed, using the Quick EMUlator (QEMU) as a tool for emulating embedded software platforms in a Linux-based environment. A SystemVerilog Direct Programming Interface (DPI) Library was developed in order to allow SystemVerilog simulators that support DPI to perform co-simulation with QEMU. A library for DLL blocks was also developed in order to allow PSIMR to communicate with QEMU. Together with QEMU, these libraries open up the possibility to co-simulate several parts of a system that includes power electronics and hardware acceleration together with an emulated embedded platform. In order to validate the functionality of the developed co-simulation environment, a demonstration application scenario was developed following a design flow that takes advantage of the mentioned simulation environment capabilities.Vivemos num mundo em que a procura por sistemas computer-based com desempenhos cada vez melhores domina o mercado. Estamos rodeados por este tipo de sistemas, usando-os todos os dias sem nos apercebermos disso, sendo grande parte deles sistemas embebidos. Ainda assim, existem problemas relacionados com os sistemas embebidos no que toca aos requisitos de tempo-real, porque uma falha destes sistemas pode ser perigosa para o utilizador ou o ambiente que o rodeia. Devido a isto, uma técnica comum para se conseguir cumprir os requisitos de tempo-real em aplicações críticas é a aceleração de aplicações de software, utilizando técnicas de paralelização e o uso de componentes de hardware dedicados. O objetivo desta dissertação é adotar uma metodologia de co-design de hardwaresoftware apoiada em co-simulação, tornando o design flow mais eficiente e fiável. Uma validação isolada não garante a funcionalidade do sistema completo, mas a utilização de um ambiente de co-simulação permite detetar problemas no sistema antes deste ser implementado na plataforma alvo. Nesta dissertação será desenvolvido um ambiente de co-simulação usando o QEMU como emulador para as plataformas de software "embebido" baseadas em Linux. Uma biblioteca para SystemVerilog DPI foi desenvolvida, que permite a co-simulação entre o QEMU e simuladores de Register-Transfer Level (RTL) que suportem SystemVerilog. Foi também desenvolvida uma biblioteca para os blocos Dynamic Link Library (DLL) do PSIMR , de modo a permitir a ligação ao QEMU. Em conjunto, as bibliotecas desenvolvidas permitem a co-simulação de diversas partes do sistema, nomeadamente do hardware de eletrónica de potência e dos aceleradores de hardware, juntamente com a plataforma embebida emulada no QEMU.Para validar as funcionalidades do ambiente de co-simulação desenvolvido, foi explorado um cenário de aplicação que tem por base esse mesmo ambiente

    LHCb VELO Upgrade: Technical Design Report

    Get PDF
    The upgraded LHCb VELO silicon vertex detector is a lightweight hybrid pixel detector capable of 40 MHz readout at a luminosity of 2×10^33 cm^−2 s^−1. The track reconstruction speed and precision is enhanced relative to the current VELO detector even at the high occupancy conditions of the upgrade, due to the pixel geometry and a closest distance of approach to the LHC beams of just 5.1 mm for the first sensitive pixel. Cooling is provided by evaporative CO2 circulating in microchannel cooling substrates. The detector contains 41 million 55μ×55μ pixels, read out by the custom developed VeloPix front end ASIC. The detector will start operation together with the rest of the upgraded LHCb experiment after the LHC LS2 shutdown, currently scheduled to end in 2019. This Technical Design Report describes the upgraded VELO system, planned construction and installation, and gives an overview of the expected detector performanc

    Development of a Hardware-in-the-loop Simulation Platform for Safety Critical Control System Evaluation

    Get PDF
    During the lifetime of a nuclear power plant (NPP) safety electronic control system components become obsolete [7]. It is difficult to find replacement components qualified for nuclear applications [50]. Due to strict regulations, replacement components undergo extensive verification and operational analysis [70]. Therefore, the need for a platform to evaluate replacement safety control systems in a non-intrusive manner is evident. Verifying the operation or functionality of potential replacement electronic control systems is often performed through simulation [71]. To enable simulation, a physical interface between potential control systems and computer based simulators is developed. System connectivity is establish using Ethernet and standard industrial electrical signals. The interface includes a National Instruments (NI) virtual instrument (VI) and data acquisition system (DAQ) hardware. The interface supports simulator controlled transmission and receipt of variables. The transmission of simulated process variables to and from an external control system is enabled. This is known as hardware-in-the-loop (HIL) simulation [49]. Next, HIL interface performance is verified and the following are identified; a measure of availability; the effect of varied configurations; and limitations. Further, an HIL simulation platform is created by connecting a NPP simulator and a programmable logic controller (PLC) to the interface, Canadian Deuterium Uranium (CANDU) reactor training simulator and Invensys Tricon version nine (v9) safety PLC respectively. The PLC is programmed to operate as shutdown system no. 1 (SDSl) of a CANDU reactor. Platform availability is verified and the response of the PLC as SDSl and is monitored during reactor shutdown. Proper execution of the steam generator level low (SGLL) logic on the PLC and variable transmission are observed. Thus, a platform and procedure for the evaluation of replacements for obsolete electronic control system components is demonstrated
    corecore