239 research outputs found

    Dynamic nonlinear inverse-model based control of a twin rotor system using adaptive neuro-fuzzy inference system

    Get PDF
    A dynamic control system design has been a great demand in the control engineering community, with many applications particularly in the field of flight control. This paper presents investigations into the development of a dynamic nonlinear inverse-model based control of a twin rotor multi-input multi-output system (TRMS). The TRMS is an aerodynamic test rig representing the control challenges of modern air vehicle. A model inversion control with the developed adaptive model is applied to the system. An adaptive neuro-fuzzy inference system (ANFIS) is augmented with the control system to improve the control response. To demonstrate the applicability of the methods, a simulated hovering motion of the TRMS, derived from experimental data is considered in order to evaluate the tracking properties and robustness capacities of the inverse- model control technique

    ANFIS modelling of a twin rotor system using particle swarm optimisation and RLS

    Get PDF
    Artificial intelligence techniques, such as neural networks and fuzzy logic have shown promising results for modelling of nonlinear systems whilst traditional approaches are rather insufficient due to difficulty in modelling of highly nonlinear components in the system. A laboratory set-up that resembles the behaviour of a helicopter, namely twin rotor multiinput multi-output system (TRMS) is used as an experimental rig in this research. An adaptive neuro-fuzzy inference system (ANFIS) tuned by particle swarm optimization (PSO) algorithm is developed in search for non-parametric model for the TRMS. The antecedent parameters of the ANFIS are optimized by a PSO algorithm and the consequent parameters are updated using recursive least squares (RLS). The results show that the proposed technique has better convergence and better performance in modeling of a nonlinear process. The identified model is justified and validated in both time domain and frequency domai

    Dynamic modelling and control of a flexible manoeuvring system.

    Get PDF
    In this research a twin rotor multi-input multi-output system (TRMS), which is a laboratory platform with 2 degrees of freedom (DOF) is considered. Although, the TRMS does not fly, it has a striking similarity with a helicopter, such as system nonlinearities and cross-coupled modes. Therefore, the TRMS can be perceived as an unconventional and complex "air vehicle" that poses formidable challenges in modelling, control design and analysis, and implementation. These issues constitute the scope of this research. Linear and nonlinear models for the vertical movement of the TRMS are obtained via system identification techniques using black-box modelling. The approach yields input-output models without a priori defined model structure or specific parameter settings reflecting any physical attributes of the system. Firstly, linear parametric models, characterising the TRMS in its hovering operation mode, are obtained using the potential of recursive least squares (RLS) estimation and genetic algorithms (GAs). Further, a nonlinear model using multi-layer perceptron (MLP) neural networks (NNs) is obtained. Such a high fidelity nonlinear model is often required for nonlinear system simulation studies and is commonly employed in the aerospace industry. Both time and frequency domain analyses are utilised to investigate and develop confidence in the models obtained. The frequency domain verification method is a useful tool in the validation of extracted parametric models. It allows high-fidelity verification of dynamic characteristics over a frequency range of interest. The resulting models are utilized in designing controllers for low frequency vibration suppression, development of suitable feedback control laws for set-point tracking, and design of augmented feedforward and feedback control schemes for both vibration suppression and set-point tracking performance. The modelling approaches presented here are shown to be suitable for modelling complex new generation air vehicles, whose flight mechanics are not well understood. Modelling of the TRMS revealed the presence of resonance modes, which are responsible for inducing unwanted vibrations in the system. Command shaping 11 control strategies are developed to reduce motion and uneven mass induced vibrations, produced by the main rotor during the vertical movement around the lateral axis of the TRMS rig. 2-impulse, 3-impulse and 4-impulse sequence input shapers and Iow-pass and band-stop digital filters are developed to shape the command signals such that the resonance modes are not overly excited. The effectiveness of this concept is then demonstrated in both simulation and real-time experimental environments in terms of level of vibration reduction using power spectral density profiles of the system response. Combinations of intelligent and conventional techniques are commonly used the control of complex dynamic systems. Such hybrid schemes have proved to be efficient and can overcome the deficiencies of conventional and intelligent controllers alone. The current study is confined to the development of two forms of hybrid control schemes that combine fuzzy control and conventional PID compensator for input tracking performance. The two hybrid control strategies comprising conventional PO control plus PlO compensator and PO-type fuzzy control plus PlO compensator are developed and implemented for set-point tracking control of the vertical movement of the TRMS rig. It is observed that the hybrid control schemes are superior to other feedback control strategies namely, PlO compensator, pure PO-type and PI-type fuzzy controllers in terms of time domain system behaviour. This research also witnesses investigations into the development of an augmented feedforward and feedback control scheme (AFFCS) for the control of rigid body motion and vibration suppression of the TRMS. The main goal of this framework is to satisfy performance objectives in terms of robust command tracking, fast system response and minimum residual vibration. The developed control strategies have been designed and implemented within both simulation and real-time environments of the TRMS rig. The employed control strategies are shown to demonstrate acceptable performances. The obtained results show that much improved tracking is achieved on positive and negative cycles of the reference signal, as compared to that without any control action. The system performance with the feedback controller is significantly improved when the feedforward control component is added. This leads to the conclusion that augmenting feedback control with feedforward method can lead to more practical and accurate control of flexible systems such as the TRMS

    Active vibration control of flexible beam incorporating recursive least square and neural network algorithms

    Get PDF
    In recent years, active vibration control (AVC) has emerged as an important area of scient ific study especially for vibrat ion suppression of flexible structures. Flexible structures offer great advantages in contrast to the conventional structures, but necessary action must be taken for cancelling the unwanted vibration. In this research, a simulation algorithm represent ing flexible beam with specific condit ions was derived from Euler Bernoulli beam theory. The proposed finite difference (FD) algorithm was developed in such way that it allows the disturbance excitat ion at various points. The predicted resonance frequencies were recorded and validated with theoretical and experimental values. Subsequent ly, flexible beam test rig was developed for collecting data to be used in system ident ificat ion (SI) and controller development. The experimental rig was also utilised for implementation and validat ion of controllers. In this research, parametric and nonparametric SI approaches were used for characterising the dynamic behaviour of a lightweight flexible beam using input - output data collected experimentally. Tradit ional recursive least square (RLS) method and several artificial neural network (ANN) architectures were utilised in emulat ing this highly nonlinear dynamic system here. Once the model of the system was obtained, it was validated through a number of validation tests and compared in terms of their performance in represent ing a real beam. Next, the development of several convent ional and intelligent control schemes with collocated and non-collocated actuator sensor configurat ion for flexible beam vibrat ion attenuation was carried out. The invest igat ion involves design of convent ional proportional-integral-derivat ive (PID) based, Inverse recursive least square active vibrat ion control (RLS-AVC), Inverse neuro active vibration control (Neuro-AVC), Inverse RLS-AVC with gain and Inverse Neuro-AVC with gain controllers. All the developed controllers were tested, verified and validated experimentally. A comprehensive comparat ive performance to highlight the advantages and drawbacks of each technique was invest igated analyt ically and experimentally. Experimental results obtained revealed the superiorit y of Inverse RLS-AVC with gain controller over convent ional method in reducing the crucial modes of vibration of flexible beam structure. Vibration attenuation achieved using proportional (P), proportional-integral (PI), Inverse RLS-AVC, Inverse Neuro- AVC, Inverse RLS-AVC with gain and Inverse Neuro-AVC with gain control strategies are 9.840 dB, 6.840 dB, 9.380 dB, 8.590 dB, 17.240 dB and 5.770 dB, respectively

    A novel hybrid bacteria-chemotaxis spiral-dynamic algorithm with application to modelling of flexible systems

    Get PDF
    This paper presents a novel hybrid optimisation algorithm namely HBCSD, which synergises a bacterial foraging algorithm (BFA) and spiral dynamics algorithm (SDA). The main objective of this strategy is to develop an algorithm that is capable to reach a global optimum point at the end of the final solution with a faster convergence speed compared to its predecessor algorithms. The BFA is incorporated into the algorithm to act as a global search or exploration phase. The solutions from the exploration phase then feed into SDA, which acts as a local search or exploitation phase. The proposed algorithm is used in dynamic modelling of two types of flexible systems, namely a flexible robot manipulator and a twin rotor system. The results obtained show that the proposed algorithm outperforms its predecessor algorithms in terms of fitness accuracy, convergence speed, and time-domain and frequency-domain dynamic characterisation of the two flexible systems. © 2014 Elsevier Ltd

    Hybrid active force control for fixed based rotorcraft

    Get PDF
    Disturbances are considered major challenges faced in the deployment of rotorcraft unmanned aerial vehicle (UAV) systems. Among different types of rotorcraft systems, the twin-rotor helicopter and quadrotor models are considered the most versatile flying machines nowadays due to their range of applications in the civilian and military sectors. However, these systems are multivariate and highly non-linear, making them difficult to be accurately controlled. Their performance could be further compromised when they are operated in the presence of disturbances or uncertainties. This dissertation presents an innovative hybrid control scheme for rotorcraft systems to improve disturbance rejection capability while maintaining system stability, based on a technique called active force control (AFC) via simulation and experimental works. A detailed dynamic model of each aerial system was derived based on the Euler–Lagrange and Newton-Euler methods, taking into account various assumptions and conditions. As a result of the derived models, a proportional-integral-derivative (PID) controller was designed to achieve the required altitude and attitude motions. Due to the PID's inability to reject applied disturbances, the AFC strategy was incorporated with the designed PID controller, to be known as the PID-AFC scheme. To estimate control parameters automatically, a number of artificial intelligence algorithms were employed in this study, namely the iterative learning algorithm and fuzzy logic. Intelligent rules of these AI algorithms were designed and embedded into the AFC loop, identified as intelligent active force control (IAFC)-based methods. This involved, PID-iterative learning active force control (PID-ILAFC) and PID-fuzzy logic active force control (PID-FLAFC) schemes. To test the performance and robustness of these proposed hybrid control systems, several disturbance models were introduced, namely the sinusoidal wave, pulsating, and Dryden wind gust model disturbances. Integral square error was selected as the index performance to compare between the proposed control schemes. In this study, the effectiveness of the PID-ILAFC strategy in connection with the body jerk performance was investigated in the presence of applied disturbance. In terms of experimental work, hardware-in-the-loop (HIL) experimental tests were conducted for a fixed-base rotorcraft UAV system to investigate how effective are the proposed hybrid PID-ILAFC schemes in disturbance rejection. Simulated results, in time domains, reveal the efficacy of the proposed hybrid IAFC-based control methods in the cancellation of different applied disturbances, while preserving the stability of the rotorcraft system, as compared to the conventional PID controller. In most of the cases, the simulated results show a reduction of more than 55% in settling time. In terms of body jerk performance, it was improved by around 65%, for twin-rotor helicopter system, and by a 45%, for quadrotor system. To achieve the best possible performance, results recommend using the full output signal produced by the AFC strategy according to the sensitivity analysis. The HIL experimental tests results demonstrate that the PID-ILAFC method can improve the disturbance rejection capability when compared to other control systems and show good agreement with the simulated counterpart. However, the selection of the appropriate learning parameters and initial conditions is viewed as a crucial step toward this improved performance
    corecore