25,205 research outputs found

    Game Theoretical Interactions of Moving Agents

    Full text link
    Game theory has been one of the most successful quantitative concepts to describe social interactions, their strategical aspects, and outcomes. Among the payoff matrix quantifying the result of a social interaction, the interaction conditions have been varied, such as the number of repeated interactions, the number of interaction partners, the possibility to punish defective behavior etc. While an extension to spatial interactions has been considered early on such as in the "game of life", recent studies have focussed on effects of the structure of social interaction networks. However, the possibility of individuals to move and, thereby, evade areas with a high level of defection, and to seek areas with a high level of cooperation, has not been fully explored so far. This contribution presents a model combining game theoretical interactions with success-driven motion in space, and studies the consequences that this may have for the degree of cooperation and the spatio-temporal dynamics in the population. It is demonstrated that the combination of game theoretical interactions with motion gives rise to many self-organized behavioral patterns on an aggregate level, which can explain a variety of empirically observed social behaviors

    Balancing noise and plasticity in eukaryotic gene expression

    Get PDF
    Coupling the control of expression stochasticity (noise) to the ability of expression change (plasticity) can alter gene function and influence adaptation. A number of factors, such as transcription re-initiation, strong chromatin regulation or genome neighboring organization, underlie this coupling. However, these factors do not necessarily combine in equivalent ways and strengths in all genes. Can we identify then alternative architectures that modulate in distinct ways the linkage of noise and plasticity? Here we first show that strong chromatin regulation, commonly viewed as a source of coupling, can lead to plasticity without noise. The nature of this regulation is relevant too, with plastic but noiseless genes being subjected to general activators whereas plastic and noisy genes experience more specific repression. Contrarily, in genes exhibiting poor transcriptional control, it is translational efficiency what separates noise from plasticity, a pattern related to transcript length. This additionally implies that genome neighboring organization -as modifier- appears only effective in highly plastic genes. In this class, we confirm bidirectional promoters (bipromoters) as a configuration capable to reduce coupling by abating noise but also reveal an important trade-off, since bipromoters also decrease plasticity. This presents ultimately a paradox between intergenic distances and modulation, with short intergenic distances both associated and disassociated to noise at different plasticity levels. Balancing the coupling among different types of expression variability appears as a potential shaping force of genome regulation and organization. This is reflected in the use of different control strategies at genes with different sets of functional constraints

    On the genericity properties in networked estimation: Topology design and sensor placement

    Full text link
    In this paper, we consider networked estimation of linear, discrete-time dynamical systems monitored by a network of agents. In order to minimize the power requirement at the (possibly, battery-operated) agents, we require that the agents can exchange information with their neighbors only \emph{once per dynamical system time-step}; in contrast to consensus-based estimation where the agents exchange information until they reach a consensus. It can be verified that with this restriction on information exchange, measurement fusion alone results in an unbounded estimation error at every such agent that does not have an observable set of measurements in its neighborhood. To over come this challenge, state-estimate fusion has been proposed to recover the system observability. However, we show that adding state-estimate fusion may not recover observability when the system matrix is structured-rank (SS-rank) deficient. In this context, we characterize the state-estimate fusion and measurement fusion under both full SS-rank and SS-rank deficient system matrices.Comment: submitted for IEEE journal publicatio
    corecore