959 research outputs found

    Multiscale Residual Learning of Graph Convolutional Sequence Chunks for Human Motion Prediction

    Full text link
    A new method is proposed for human motion prediction by learning temporal and spatial dependencies. Recently, multiscale graphs have been developed to model the human body at higher abstraction levels, resulting in more stable motion prediction. Current methods however predetermine scale levels and combine spatially proximal joints to generate coarser scales based on human priors, even though movement patterns in different motion sequences vary and do not fully comply with a fixed graph of spatially connected joints. Another problem with graph convolutional methods is mode collapse, in which predicted poses converge around a mean pose with no discernible movements, particularly in long-term predictions. To tackle these issues, we propose ResChunk, an end-to-end network which explores dynamically correlated body components based on the pairwise relationships between all joints in individual sequences. ResChunk is trained to learn the residuals between target sequence chunks in an autoregressive manner to enforce the temporal connectivities between consecutive chunks. It is hence a sequence-to-sequence prediction network which considers dynamic spatio-temporal features of sequences at multiple levels. Our experiments on two challenging benchmark datasets, CMU Mocap and Human3.6M, demonstrate that our proposed method is able to effectively model the sequence information for motion prediction and outperform other techniques to set a new state-of-the-art. Our code is available at https://github.com/MohsenZand/ResChunk.Comment: 13 page

    Trajectory-Aware Body Interaction Transformer for Multi-Person Pose Forecasting

    Full text link
    Multi-person pose forecasting remains a challenging problem, especially in modeling fine-grained human body interaction in complex crowd scenarios. Existing methods typically represent the whole pose sequence as a temporal series, yet overlook interactive influences among people based on skeletal body parts. In this paper, we propose a novel Trajectory-Aware Body Interaction Transformer (TBIFormer) for multi-person pose forecasting via effectively modeling body part interactions. Specifically, we construct a Temporal Body Partition Module that transforms all the pose sequences into a Multi-Person Body-Part sequence to retain spatial and temporal information based on body semantics. Then, we devise a Social Body Interaction Self-Attention (SBI-MSA) module, utilizing the transformed sequence to learn body part dynamics for inter- and intra-individual interactions. Furthermore, different from prior Euclidean distance-based spatial encodings, we present a novel and efficient Trajectory-Aware Relative Position Encoding for SBI-MSA to offer discriminative spatial information and additional interactive clues. On both short- and long-term horizons, we empirically evaluate our framework on CMU-Mocap, MuPoTS-3D as well as synthesized datasets (6 ~ 10 persons), and demonstrate that our method greatly outperforms the state-of-the-art methods. Code will be made publicly available upon acceptance.Comment: Accepted by CVPR2023, 8 pages, 6 figures. arXiv admin note: text overlap with arXiv:2208.0922

    EqMotion: Equivariant Multi-agent Motion Prediction with Invariant Interaction Reasoning

    Full text link
    Learning to predict agent motions with relationship reasoning is important for many applications. In motion prediction tasks, maintaining motion equivariance under Euclidean geometric transformations and invariance of agent interaction is a critical and fundamental principle. However, such equivariance and invariance properties are overlooked by most existing methods. To fill this gap, we propose EqMotion, an efficient equivariant motion prediction model with invariant interaction reasoning. To achieve motion equivariance, we propose an equivariant geometric feature learning module to learn a Euclidean transformable feature through dedicated designs of equivariant operations. To reason agent's interactions, we propose an invariant interaction reasoning module to achieve a more stable interaction modeling. To further promote more comprehensive motion features, we propose an invariant pattern feature learning module to learn an invariant pattern feature, which cooperates with the equivariant geometric feature to enhance network expressiveness. We conduct experiments for the proposed model on four distinct scenarios: particle dynamics, molecule dynamics, human skeleton motion prediction and pedestrian trajectory prediction. Experimental results show that our method is not only generally applicable, but also achieves state-of-the-art prediction performances on all the four tasks, improving by 24.0/30.1/8.6/9.2%. Code is available at https://github.com/MediaBrain-SJTU/EqMotion.Comment: Accepted to CVPR 202

    Concurrence-Aware Long Short-Term Sub-Memories for Person-Person Action Recognition

    Full text link
    Recently, Long Short-Term Memory (LSTM) has become a popular choice to model individual dynamics for single-person action recognition due to its ability of modeling the temporal information in various ranges of dynamic contexts. However, existing RNN models only focus on capturing the temporal dynamics of the person-person interactions by naively combining the activity dynamics of individuals or modeling them as a whole. This neglects the inter-related dynamics of how person-person interactions change over time. To this end, we propose a novel Concurrence-Aware Long Short-Term Sub-Memories (Co-LSTSM) to model the long-term inter-related dynamics between two interacting people on the bounding boxes covering people. Specifically, for each frame, two sub-memory units store individual motion information, while a concurrent LSTM unit selectively integrates and stores inter-related motion information between interacting people from these two sub-memory units via a new co-memory cell. Experimental results on the BIT and UT datasets show the superiority of Co-LSTSM compared with the state-of-the-art methods

    MSA-GCN:Multiscale Adaptive Graph Convolution Network for Gait Emotion Recognition

    Full text link
    Gait emotion recognition plays a crucial role in the intelligent system. Most of the existing methods recognize emotions by focusing on local actions over time. However, they ignore that the effective distances of different emotions in the time domain are different, and the local actions during walking are quite similar. Thus, emotions should be represented by global states instead of indirect local actions. To address these issues, a novel Multi Scale Adaptive Graph Convolution Network (MSA-GCN) is presented in this work through constructing dynamic temporal receptive fields and designing multiscale information aggregation to recognize emotions. In our model, a adaptive selective spatial-temporal graph convolution is designed to select the convolution kernel dynamically to obtain the soft spatio-temporal features of different emotions. Moreover, a Cross-Scale mapping Fusion Mechanism (CSFM) is designed to construct an adaptive adjacency matrix to enhance information interaction and reduce redundancy. Compared with previous state-of-the-art methods, the proposed method achieves the best performance on two public datasets, improving the mAP by 2\%. We also conduct extensive ablations studies to show the effectiveness of different components in our methods
    • …
    corecore