46,969 research outputs found

    Multi-Layer Neural Networks for Quality of Service oriented Server-State Classification in Cloud Servers

    Get PDF
    Task allocation systems in the Cloud have been recently proposed so that their performance is optimised in real-time based on reinforcement learning with spiking Random Neural Networks (RNN). In this paper, rather than reinforcement learning, we suggest the use of multi-layer neural network architectures to infer the state of servers in a dynamic networked Cloud environment, and propose to select the most adequate server based on the task that optimises Quality of Service. First, a procedure is presented to construct datasets for state classification by collecting time-varying data from Cloud servers that have different resource configurations, so that the identification of server states is carried out with supervised classification. We test four distinct multi-layer neural network architectures to this effect: multi-layer dense clusters of RNNs (MLRNN), the hierarchical extreme learning machine (H-ELM), the multi-layer perceptron, and convolutional neural networks. Our experimental results indicate that server-state identification can be carried out efficiently and with the best accuracy using the MLRNN and H-ELM

    A Feature Learning Siamese Model for Intelligent Control of the Dynamic Range Compressor

    Full text link
    In this paper, a siamese DNN model is proposed to learn the characteristics of the audio dynamic range compressor (DRC). This facilitates an intelligent control system that uses audio examples to configure the DRC, a widely used non-linear audio signal conditioning technique in the areas of music production, speech communication and broadcasting. Several alternative siamese DNN architectures are proposed to learn feature embeddings that can characterise subtle effects due to dynamic range compression. These models are compared with each other as well as handcrafted features proposed in previous work. The evaluation of the relations between the hyperparameters of DNN and DRC parameters are also provided. The best model is able to produce a universal feature embedding that is capable of predicting multiple DRC parameters simultaneously, which is a significant improvement from our previous research. The feature embedding shows better performance than handcrafted audio features when predicting DRC parameters for both mono-instrument audio loops and polyphonic music pieces.Comment: 8 pages, accepted in IJCNN 201

    End-to-End Tracking and Semantic Segmentation Using Recurrent Neural Networks

    Full text link
    In this work we present a novel end-to-end framework for tracking and classifying a robot's surroundings in complex, dynamic and only partially observable real-world environments. The approach deploys a recurrent neural network to filter an input stream of raw laser measurements in order to directly infer object locations, along with their identity in both visible and occluded areas. To achieve this we first train the network using unsupervised Deep Tracking, a recently proposed theoretical framework for end-to-end space occupancy prediction. We show that by learning to track on a large amount of unsupervised data, the network creates a rich internal representation of its environment which we in turn exploit through the principle of inductive transfer of knowledge to perform the task of it's semantic classification. As a result, we show that only a small amount of labelled data suffices to steer the network towards mastering this additional task. Furthermore we propose a novel recurrent neural network architecture specifically tailored to tracking and semantic classification in real-world robotics applications. We demonstrate the tracking and classification performance of the method on real-world data collected at a busy road junction. Our evaluation shows that the proposed end-to-end framework compares favourably to a state-of-the-art, model-free tracking solution and that it outperforms a conventional one-shot training scheme for semantic classification
    • …
    corecore