5,671 research outputs found

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Plant-Wide Diagnosis: Cause-and-Effect Analysis Using Process Connectivity and Directionality Information

    Get PDF
    Production plants used in modern process industry must produce products that meet stringent environmental, quality and profitability constraints. In such integrated plants, non-linearity and strong process dynamic interactions among process units complicate root-cause diagnosis of plant-wide disturbances because disturbances may propagate to units at some distance away from the primary source of the upset. Similarly, implemented advanced process control strategies, backup and recovery systems, use of recycle streams and heat integration may hamper detection and diagnostic efforts. It is important to track down the root-cause of a plant-wide disturbance because once corrective action is taken at the source, secondary propagated effects can be quickly eliminated with minimum effort and reduced down time with the resultant positive impact on process efficiency, productivity and profitability. In order to diagnose the root-cause of disturbances that manifest plant-wide, it is crucial to incorporate and utilize knowledge about the overall process topology or interrelated physical structure of the plant, such as is contained in Piping and Instrumentation Diagrams (P&IDs). Traditionally, process control engineers have intuitively referred to the physical structure of the plant by visual inspection and manual tracing of fault propagation paths within the process structures, such as the process drawings on printed P&IDs, in order to make logical conclusions based on the results from data-driven analysis. This manual approach, however, is prone to various sources of errors and can quickly become complicated in real processes. The aim of this thesis, therefore, is to establish innovative techniques for the electronic capture and manipulation of process schematic information from large plants such as refineries in order to provide an automated means of diagnosing plant-wide performance problems. This report also describes the design and implementation of a computer application program that integrates: (i) process connectivity and directionality information from intelligent P&IDs (ii) results from data-driven cause-and-effect analysis of process measurements and (iii) process know-how to aid process control engineers and plant operators gain process insight. This work explored process intelligent P&IDs, created with AVEVA® P&ID, a Computer Aided Design (CAD) tool, and exported as an ISO 15926 compliant platform and vendor independent text-based XML description of the plant. The XML output was processed by a software tool developed in Microsoft® .NET environment in this research project to computationally generate connectivity matrix that shows plant items and their connections. The connectivity matrix produced can be exported to Excel® spreadsheet application as a basis for other application and has served as precursor to other research work. The final version of the developed software tool links statistical results of cause-and-effect analysis of process data with the connectivity matrix to simplify and gain insights into the cause and effect analysis using the connectivity information. Process knowhow and understanding is incorporated to generate logical conclusions. The thesis presents a case study in an atmospheric crude heating unit as an illustrative example to drive home key concepts and also describes an industrial case study involving refinery operations. In the industrial case study, in addition to confirming the root-cause candidate, the developed software tool was set the task to determine the physical sequence of fault propagation path within the plant. This was then compared with the hypothesis about disturbance propagation sequence generated by pure data-driven method. The results show a high degree of overlap which helps to validate statistical data-driven technique and easily identify any spurious results from the data-driven multivariable analysis. This significantly increase control engineers confidence in data-driven method being used for root-cause diagnosis. The thesis concludes with a discussion of the approach and presents ideas for further development of the methods

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    NASA SBIR product catalog, 1991

    Get PDF
    This catalog is a partial list of products of NASA SBIR (Small Business Innovation Research) projects that have advanced to some degree into Phase 3. While most of the products evolved from work conducted during SBIR Phase 1 and 2, a few advanced to commercial status solely from Phase 1 activities. The catalog presents information provided to NASA by SBIR contractors who wished to have their products exhibited at Technology 2001, a NASA-sponsored technology transfer conference held in San Jose, California, on December 4, 5, and 6, 1991. The catalog presents the product information in the following technology areas: computer and communication systems; information processing and AI; robotics and automation; signal and image processing; microelectronics; electronic devices and equipment; microwave electronic devices; optical devices and lasers; advanced materials; materials processing; materials testing and NDE; materials instrumentation; aerodynamics and aircraft; fluid mechanics and measurement; heat transfer devices; refrigeration and cryogenics; energy conversion devices; oceanographic instruments; atmosphere monitoring devices; water management; life science instruments; and spacecraft electromechanical systems
    corecore