2,864 research outputs found

    Radar HRRP Modeling using Dynamic System for Radar Target Recognition

    Get PDF
    High resolution range profile (HRRP) is being known as one of the most powerful tools for radar target recognition. The main problem with range profile for radar target recognition is its sensitivity to aspect angle. To overcome this problem, consecutive samples of HRRP were assumed to be identically independently distributed (IID) in small frames of aspect angles in most of the related works. Here, considering the physical circumstances of maneuver of an aerial target, we have proposed dynamic system which models the short dependency between consecutive samples of HRRP in segments of the whole HRRP sequence. Dynamic system (DS) is used to model the sequence of PCA (principal component analysis) coefficients extracted from the sequence of HRRPs. Considering this we have proposed a model called PCA+DS. We have also proposed a segmentation algorithm which segments the HRRP sequence reliably. Akaike information criterion (AIC) used to evaluate the quality of data modeling showed that our PCA+DS model outperforms factor analysis (FA) model. In addition, target recognition results using simulated data showed that our method based on PCA+DS achieves better recognition rates compared to the method based on FA

    Bayesian Lattice Filters for Time-Varying Autoregression and Time-Frequency Analysis

    Full text link
    Modeling nonstationary processes is of paramount importance to many scientific disciplines including environmental science, ecology, and finance, among others. Consequently, flexible methodology that provides accurate estimation across a wide range of processes is a subject of ongoing interest. We propose a novel approach to model-based time-frequency estimation using time-varying autoregressive models. In this context, we take a fully Bayesian approach and allow both the autoregressive coefficients and innovation variance to vary over time. Importantly, our estimation method uses the lattice filter and is cast within the partial autocorrelation domain. The marginal posterior distributions are of standard form and, as a convenient by-product of our estimation method, our approach avoids undesirable matrix inversions. As such, estimation is extremely computationally efficient and stable. To illustrate the effectiveness of our approach, we conduct a comprehensive simulation study that compares our method with other competing methods and find that, in most cases, our approach performs superior in terms of average squared error between the estimated and true time-varying spectral density. Lastly, we demonstrate our methodology through three modeling applications; namely, insect communication signals, environmental data (wind components), and macroeconomic data (US gross domestic product (GDP) and consumption).Comment: 49 pages, 16 figure

    Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multi-wavelets

    Get PDF
    A new time-varying autoregressive (TVAR) modelling approach is proposed for nonstationary signal processing and analysis, with application to EEG data modelling and power spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of the TVAR model are represented using a novel multi-wavelet decomposition scheme. The time-varying modelling problem is then reduced to regression selection and parameter estimation, which can be effectively resolved by using a forward orthogonal regression algorithm. Two examples, one for an artificial signal and another for an EEG signal, are given to show the effectiveness and applicability of the new TVAR modelling method

    Time-varying model identification for time-frequency feature extraction from EEG data

    Get PDF
    A novel modelling scheme that can be used to estimate and track time-varying properties of nonstationary signals is investigated. This scheme is based on a class of time-varying AutoRegressive with an eXogenous input (ARX) models where the associated time-varying parameters are represented by multi-wavelet basis functions. The orthogonal least square (OLS) algorithm is then applied to refine the model parameter estimates of the time-varying ARX model. The main features of the multi-wavelet approach is that it enables smooth trends to be tracked but also to capture sharp changes in the time-varying process parameters. Simulation studies and applications to real EEG data show that the proposed algorithm can provide important transient information on the inherent dynamics of nonstationary processes

    THRESHOLD MODELS IN THEORY AND PRACTICE

    Get PDF
    Threshold models have gained much recent attention in applied economics for modeling nonlinear behavior. The appeal for these models is due in part to the observable pattern that many economic variables follow, such as asymmetric adjustment towards equilibrium. This paper reviews the literature and provides links to software programs.Research Methods/ Statistical Methods,

    Automated smoother for the numerical decoupling of dynamics models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure.</p> <p>Results</p> <p>In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from <it>in-vivo </it>NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations.</p> <p>Conclusion</p> <p>The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental time series.</p

    Superposition frames for adaptive time-frequency analysis and fast reconstruction

    Full text link
    In this article we introduce a broad family of adaptive, linear time-frequency representations termed superposition frames, and show that they admit desirable fast overlap-add reconstruction properties akin to standard short-time Fourier techniques. This approach stands in contrast to many adaptive time-frequency representations in the extant literature, which, while more flexible than standard fixed-resolution approaches, typically fail to provide efficient reconstruction and often lack the regular structure necessary for precise frame-theoretic analysis. Our main technical contributions come through the development of properties which ensure that this construction provides for a numerically stable, invertible signal representation. Our primary algorithmic contributions come via the introduction and discussion of specific signal adaptation criteria in deterministic and stochastic settings, based respectively on time-frequency concentration and nonstationarity detection. We conclude with a short speech enhancement example that serves to highlight potential applications of our approach.Comment: 16 pages, 6 figures; revised versio
    • …
    corecore