1,030 research outputs found

    Bowed string synthesis with force feedback gesture interaction

    No full text
    International audienceThe CORDIS ANIMA formalism allows to model physical objects according to a modular methodology which guaranties, at each step of modeling, the energetic consistency of the behavior of the model. Maintening this energetic consistency is a crucial point in the use of interactive simulation by means of Physical Modeling and Force Feedback Gesture Devices. This paper presents a CORDIS-ANIMA model of bowed string, which closely links the properties of the produced sounds to the gesture and energetic investment of the player. A pertinent feature of real bowed instruments is their high sensitivity to the gesture dynamic. The proposed model restitutes this sensitivity providing high musical quality and nuances in the synthetic sounds. In addition, the use of the consistent physically-based modular designing presented here, allows the designer to lead towards a minimal physical model able to restitute this so pertinent feature

    Caracterização vibroacústica e síntese sonora da viola caipira

    Get PDF
    Orientadores: José Maria Campos dos Santos, François Gautier, Frédéric AblitzerTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Le Mans UniversitéResumo: A viola caipira é um tipo de viola brasileira amplamente utilizada na música popular. Ela é composta de dez cordas metálicas dispostas em cinco pares, afinadas em uníssono ou oitava. Este trabalho de tese concentra-se na análise das especificidades dos sons musicais produzidos por este instrumento pouco estudado na literatura. A análise dos sons de viola caipira mostra a presença de vibrações simpáticas de cordas, o que resulta em um halo de som, constituindo uma característica perceptiva importante. Os movimentos de cordas dedilhadas são estudados usando uma câmera de alta velocidade, revelando a existência de choques entre cordas que levam a efeitos claramente audíveis. A análise modal das vibrações do corpo realizada por um vibrômetro à laser de varredura e um martelo de impacto automático permite identificar algumas diferenças em relação ao violão clássico. As mobilidades do cavalete também são medidas usando o método do fio quebrante, que é simples de usar e de baixo custo, uma vez que não requer o uso de um sensor de força. Combinadas com uma análise modal de alta resolução (método ESPRIT), tais medidas permitem determinar as formas modais nos pontos de acoplamento entre corda/corpo e assim caracterizar o instrumento. Uma modelagem física baseada em uma abordagem modal híbrida é realizada para fins de síntese sonora. Tal modelagem considera os movimentos das cordas em duas polarizações, os acoplamentos com o corpo e as colisões entre cordas. Este modelo é chamado de modelo híbrido porque combina uma abordagem analítica para descrever as vibrações de cordas e parâmetros experimentais que descrevem o corpo. Um conjunto de simulações no domínio do tempo revelam as principais características da viola caipiraAbstract: The viola caipira is a type of Brazilian guitar widely used in popular music. It consists of ten metallic strings arranged in five pairs, tuned in unison or octave. The thesis work focuses on the analysis of the specificities of musical sounds produced by this instrument, which has been little studied in the literature. The analysis of the motions of plucked strings using a high speed camera shows the existence of sympathetic vibrations, which results in a sound halo, constituting an important perceptive feature. These measurements also reveal the existence of shocks between strings, which lead to very clearly audible consequences. The modal analysis of the body vibrations, carried out by a scanning laser vibrometer and an automatic impact hammer reveals some differences and similarities with the classical guitar. Bridges mobilities are also measured using the wire-breaking method, which is simple to use and inexpensive since it does not require the use of a force sensor. Combined with a high-resolution modal analysis (ESPRIT method), these measurements enable to determine the modal shapes at the string/body coupling points and thus to characterize the instrument. A physical modelling, based on a modal approach, is carried out for sound synthesis purposes. It takes into account the strings motions with two orthogonal polarizations, the couplings with the body and the collisions between strings. This model is called a hybrid model because it combines an analytical approach to describe the vibrations of strings and experimental data describing the body. Simulations in the time domain reveal the main characteristics of the viola caipiraDoutoradoMecanica dos Sólidos e Projeto MecanicoDoutor em Engenharia Mecânica141214/2013-999999.010073/2014-00CNPQCAPE

    Real-time physical model of an Aeolian harp

    Get PDF
    A real-time physical sound synthesis model of an Aeolian harp is presented. The model uses semi- empirical fluid dynamics equations to inform its operation, providing suitable parameters for users to interact. A basic wind model is included as well as an interface allowing user adjustable param- eters. Sounds generated by the model were subject to objective measurements against real-world recordings, which showed that many of the physical properties of the harp were replicated in our model, but a possible link between harmonics and vibration amplitude was not. A perceptual test was performed, where participants were asked to rate sounds in terms of how plausible they were in comparison with spectral modelling synthesis and recorded Aeolian Harp samples. Evaluation showed that our model performed as well as an alternative non-physical synthesis method, but was not as authentic as actual recorded samples

    Extending the sound of the guzheng

    Get PDF
    The guzheng is a representative Chinese traditional musical instrument with more than 2000 years of history. However, the acoustics of the instrument have not been investigated to the same extent as some other Chinese instruments. This work sets out to advance and develop the guzheng, by extending its sonic potential, via the application of the technology. In this dissertation, current transformation, modelling, recording and production techniques are discussed for extending the capacities of the instrument. Recordings of the guzheng including the impulse response measurement of the instrument that capture the acoustic characteristics of the guzheng are presented. An additive synthesis model and physical modelling synthesis model of the guzheng are presented to simulate guzheng tones in Max/MSP. Guzheng recordings and synthetic results have been applied to the production of a famous traditional guzheng piece ‘Yu Zhou Chang Wan’ and this work is described here. The research is intended to contribute to the inheritance and development of the guzheng. By extending its timbre and pitch range,guzheng compositions and performances can be more diversified

    Creating Real-Time Aeroacoustic Sound Effects Using Physically Informed Models

    Get PDF
    Aeroacoustics is a branch of engineering within fluid dynamics. It encompasses sounds generated by disturbances in air either by an airflow being disturbed by an object or an object moving through air. A number of fundamental sound sources exist depending on the geometry of the interacting objects and the characteristics of the flow. An example of a fundamental aeroacoustic sound source is the Aeolian tone, generated by vortex shedding as air flows around an object. A compact source model of this sound is informed from fluid dynamics principles, operating in real-time, and presenting highly relevant parameters to the user. A swinging sword, Aeolian harp, and propeller are behavior models are presented to illustrate how a taxonomy of real-time aeroacoustic sound synthesis can be achieved through physical informed modeling. Evaluation indicates that the resulting sounds are perceptually as believable as sounds produced by other synthesis methods, while objective evaluations reveal similarities and differences between our models, pre-recorded samples, and those generated by computationally complex offline methods

    Perception of attributes in real and synthetic string instrument sounds

    Get PDF
    This thesis explores the perceptual features of natural and synthetic string instrument sounds. The contributions are in formal listening experiments on a variety of features in musical sounds that have not been studied in detail previously. The effects of inharmonicity on timbre and pitch have been measured. The results indicate that the implementation of inharmonicity is not always necessary. The timbre effect is more salient in natural instruments, but for high tones a pitch difference may also be detected. Guidelines were given for compensation of the pitch effect. A perceptual study of the decaying parameters showed that large deviations from the reference value are tolerated perceptually. The studies on the audibility of initial pitch glides and dual-polarization effects provides practical knowledge that helps in the implementation of these features in digital sound synthesis. Related to expression rather than basic string behavior, the study on perception-based control of the vibrato parameters has a sligthly different background. However, all of the studied features are more or less player-controlled by different ways of plucking the string or pressing the key. The main objective of the thesis is to find answers to current problems in digital sound synthesis, such as parameter quantization. Another aim is to gain more general understanding of how we perceive musical sounds.reviewe

    Designing and Composing for Interdependent Collaborative Performance with Physics-Based Virtual Instruments

    Get PDF
    Interdependent collaboration is a system of live musical performance in which performers can directly manipulate each other’s musical outcomes. While most collaborative musical systems implement electronic communication channels between players that allow for parameter mappings, remote transmissions of actions and intentions, or exchanges of musical fragments, they interrupt the energy continuum between gesture and sound, breaking our cognitive representation of gesture to sound dynamics. Physics-based virtual instruments allow for acoustically and physically plausible behaviors that are related to (and can be extended beyond) our experience of the physical world. They inherently maintain and respect a representation of the gesture to sound energy continuum. This research explores the design and implementation of custom physics-based virtual instruments for realtime interdependent collaborative performance. It leverages the inherently physically plausible behaviors of physics-based models to create dynamic, nuanced, and expressive interconnections between performers. Design considerations, criteria, and frameworks are distilled from the literature in order to develop three new physics-based virtual instruments and associated compositions intended for dissemination and live performance by the electronic music and instrumental music communities. Conceptual, technical, and artistic details and challenges are described, and reflections and evaluations by the composer-designer and performers are documented

    Deriving musical control features froma real-time timbre analysis of the clarinet

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (leaves 65-67).by Eran Baruch Egozy.M.Eng

    On inharmonicity in bass guitar strings with application to tapered and lumped constructions

    Get PDF
    In this study, the inharmonicity of bass guitar strings with and without areas of lowered and raised mass near the saddle is studied. Using a very high sample rate of over 900 kHz enabled finite difference time domain simulation to be applied for strings that simultaneously have nonzero stiffness and linear density which varies along the length of the string. Results are compared to experiments on specially constructed strings. Perturbation theory is demonstrated to be sufficiently accurate (and much more computationally efficient) for practical design purposes in reducing inharmonicity. The subject of inharmonicity is well known in pianos but has not been studied extensively in bass guitar strings. Here, the inharmonicity is found to be low in the lowest (open string) pitch on the five string bass guitar (B0) given typical standard construction. Conversely, the inharmonicity is high (around 100 cents at the 10th partial) when that string is sounded when stopped at the 12th fret and very high (around 100 cents at the 6th partial) when that string is stopped at the 21st fret. Bass guitar strings were constructed with three different constructions (standard, tapered and lumped) in order to demonstrate how incorporating a lump of raised mass near the saddle can achieve close to zero inharmonicity for the lower frequency partials. This also has potential in terms of improving the use of higher fret numbers for musical harmony (reducing beating) and also in controlling pitch glide that has, with some exceptions, often been attributed solely to nonlinear behaviour.Publisher PDFPeer reviewe
    • …
    corecore