27,951 research outputs found

    Algorithms of causal inference for the analysis of effective connectivity among brain regions

    Get PDF
    In recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl’s causality, algorithms of inductive causation (IC and IC*) provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze causal influences (effective connectivity) among brain regions. However, their application to dynamic processes has not been yet examined. Here we study how to apply these algorithms to time-varying signals such as electrophysiological or neuroimaging signals. We propose a new algorithm which combines the basic principles of the previous algorithms with Granger causality to obtain a representation of the causal relations suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic statistical dependencies between the signals from the causal structure. We show how some problems for causal inference from neural signals (e.g., measurement noise, hemodynamic responses, and time aggregation) can be understood in a general graphical approach. Focusing on the effect of spatial aggregation, we show that when causal inference is performed at a coarser scale than the one at which the neural sources interact, results strongly depend on the degree of integration of the neural sources aggregated in the signals, and thus characterize more the intra-areal properties than the interactions among regions. We finally discuss how the explicit consideration of latent processes contributes to understand Granger causality and DCM as well as to distinguish functional and effective connectivity

    Where do statistical models come from? Revisiting the problem of specification

    Full text link
    R. A. Fisher founded modern statistical inference in 1922 and identified its fundamental problems to be: specification, estimation and distribution. Since then the problem of statistical model specification has received scant attention in the statistics literature. The paper traces the history of statistical model specification, focusing primarily on pioneers like Fisher, Neyman, and more recently Lehmann and Cox, and attempts a synthesis of their views in the context of the Probabilistic Reduction (PR) approach. As argued by Lehmann [11], a major stumbling block for a general approach to statistical model specification has been the delineation of the appropriate role for substantive subject matter information. The PR approach demarcates the interrelated but complemenatry roles of substantive and statistical information summarized ab initio in the form of a structural and a statistical model, respectively. In an attempt to preserve the integrity of both sources of information, as well as to ensure the reliability of their fusing, a purely probabilistic construal of statistical models is advocated. This probabilistic construal is then used to shed light on a number of issues relating to specification, including the role of preliminary data analysis, structural vs. statistical models, model specification vs. model selection, statistical vs. substantive adequacy and model validation.Comment: Published at http://dx.doi.org/10.1214/074921706000000419 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Probabilistic Programming Concepts

    Full text link
    A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been developed since more than 20 years

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    Philosophy and the practice of Bayesian statistics

    Full text link
    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework.Comment: 36 pages, 5 figures. v2: Fixed typo in caption of figure 1. v3: Further typo fixes. v4: Revised in response to referee
    • …
    corecore