991 research outputs found

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    A survey on the development status and application prospects of knowledge graph in smart grids

    Full text link
    With the advent of the electric power big data era, semantic interoperability and interconnection of power data have received extensive attention. Knowledge graph technology is a new method describing the complex relationships between concepts and entities in the objective world, which is widely concerned because of its robust knowledge inference ability. Especially with the proliferation of measurement devices and exponential growth of electric power data empowers, electric power knowledge graph provides new opportunities to solve the contradictions between the massive power resources and the continuously increasing demands for intelligent applications. In an attempt to fulfil the potential of knowledge graph and deal with the various challenges faced, as well as to obtain insights to achieve business applications of smart grids, this work first presents a holistic study of knowledge-driven intelligent application integration. Specifically, a detailed overview of electric power knowledge mining is provided. Then, the overview of the knowledge graph in smart grids is introduced. Moreover, the architecture of the big knowledge graph platform for smart grids and critical technologies are described. Furthermore, this paper comprehensively elaborates on the application prospects leveraged by knowledge graph oriented to smart grids, power consumer service, decision-making in dispatching, and operation and maintenance of power equipment. Finally, issues and challenges are summarised.Comment: IET Generation, Transmission & Distributio

    Pervasive Data Analytics for Sustainable Energy Systems

    Get PDF
    With an ever growing population, global energy demand is predicted to keep increasing. Furthermore, the integration of renewable energy sources into the electricity grid (to reduce carbon emission and humanity's dependency on fossil fuels), complicates efforts to balance supply and demand, since their generation is intermittent and unpredictable. Traditionally, it has always been the supply side that has adapted to follow energy demand, however, in order to have a sustainable energy system for the future, the demand side will have to be better managed to match the available energy supply. In the first part of this thesis, we focus on understanding customers' energy consumption behavior (demand analytics). While previously, information about customer's energy consumption could be obtained only with coarse granularity (e.g., monthly or bimonthly), nowadays, using advanced metering infrastructure (or smart meters), utility companies are able to retrieve it in near real-time. By leveraging smart meter data, we then develop a versatile customer segmentation framework, track cluster changes over time, and identify key characteristics that define a cluster. Additionally, although household-level consumption is hard to predict, it can be used to improve aggregate-level forecasting by first segmenting the households into several clusters, forecasting the energy consumption of each cluster, and then aggregating those forecasts. The improvements provided by this strategy depend not only on the number of clusters, but also on the size of the customer base. Furthermore, we develop an approach to model the uncertainty of future demand. In contrast to previous work that used computationally expensive methods, such as simulation, bootstrapping, or ensemble, we construct prediction intervals directly using the time-varying conditional mean and variance of future demand. While analytics on customer energy data are indeed essential to understanding customer behavior, they could also lead to breaches of privacy, with all the attendant risks. The first part of this thesis closes by exploring symbolic representations of smart meter data which still allow learning algorithms to be performed on top of them, thus providing a trade-off between accurate analytics and the protection of customer privacy. In the second part of this thesis, we focus on mechanisms for incentivizing changes in customers' energy usage in order to maintain (electricity) grid stability, i.e., Demand Response (DR). We complement previous work in this area (which typically targeted large, industrial customers) by studying the application of DR to residential customers. We first study the influence of DR baselines, i.e., estimates of what customers would have consumed in the absence of a DR event. While the literature to date has focused on baseline accuracy and bias, we go beyond these concepts by explaining how a baseline affects customer participation in a DR event, and how it affects both the customer and company profit. We then discuss a strategy for matching the demand side with the supply side by using a multiunit auction performed by intelligent agents on behalf of customers. The thesis closes by eliciting behavioral incentives from the crowd of customers for promoting and maintaining customer engagement in DR programs

    A real time urban sustainability assessment framework for the smart city paradigm

    Get PDF
    Cities have proven to be a great source of concerns on their impact on the world environment and ecosystem. The objective, in a context where environmental concerns are growing rapidly, is no longer to develop liveable cities but to develop sustainable and responsive cities. This study investigates the currently available urban sustainability assessment (USA) schemes and outlines the main issues that the field is facing. After an extensive literature review, the author advocates for a scheme that would dynamically capture urban areas sustainability insights during their operation, a more user-centred and transparent scheme. The methodological approach has enabled the construction of a solid expertise on urban sustainability indicators, the essential role of the smart city and the Internet of Thing for a real-time key performance indicators determination and assessment, and technical and organisational challenges that such solution would encounter. Key domains such as sensing networks, remote sensing and GIS technologies, BIM technologies, Statistical databases and Open Governmental data platform, crowdsourcing and data mining that could support a real-time urban sustainability assessment have been studied. Additionally, the use of semantic web technologies has been investigated as a mean to deal with sources heterogeneity from diverse data structures and their interoperability. An USA ontology has been designed, integrating existing ontologies such as SSN, ifcOWL, cityGML and geoSPARQL. A web application back-end has then been built around this ontology. The application backbone is an Ontology-Based Data Access where a Relational Database is mapped to the USA ontology, enabling to link sensors data to pieces of information on the urban environment. Overall, this study has contributed to the body of knowledge by introducing an Ontology-Based Data Access (OBDA) approach to support real-time urban sustainability assessment leveraging sensors networks. It addresses both technical and organisational challenges that the smart systems domain is facing and is believed to be a valuable approach in the upcoming smart city paradigm. The solution proposed to tackle the research questions still faces some limitations such as a limited validation of the USA scheme, the OBDA limited intelligence, an improvable BIM and cityGML models conversion to RDF or the lack of user interface. Future work should be carried out to overcome those limitations and to provide stakeholders a high-hand service

    Machine learning for smart building applications: Review and taxonomy

    Get PDF
    © 2019 Association for Computing Machinery. The use of machine learning (ML) in smart building applications is reviewed in this article. We split existing solutions into two main classes: occupant-centric versus energy/devices-centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories: (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed, and compared; open perspectives and research trends are discussed as well. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The article ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field

    Data-Driven Virtual Replication of Thermostatically Controlled Domestic Heating Systems

    Get PDF
    Thermostatic load control systems are widespread in many countries. Since they provide heat for domestic hot water and space heating on a massive scale in the residential sector, the assessment of their energy performance and the effect of different control strategies requires simplified modeling techniques demanding a small number of inputs and low computational resources. Data-driven techniques are envisaged as one of the best options to meet these constraints. This paper presents a novel methodology consisting of the combination of an optimization algorithm, two auto-regressive models and a control loop algorithm able to virtually replicate the control of thermostatically driven systems. This combined strategy includes all the thermostatically controlled modes governed by the set point temperature and enables automatic assessment of the energy consumption impact of multiple scenarios. The required inputs are limited to available historical readings from smart thermostats and external climate data sources. The methodology has been trained and validated with data sets coming from a selection of 11 smart thermostats, connected to gas boilers, placed in several households located in north-eastern Spain. Important conclusions of the research are that these techniques can estimate the temperature decay of households when the space heating is off as well as the energy consumption needed to reach the comfort conditions. The results of the research also show that estimated median energy savings of 18.1% and 36.5% can be achieved if the usual set point temperature schedule is lowered by 1 degrees C and 2 degrees C, respectively
    • …
    corecore