232 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN

    Holographic MIMO Communications: Theoretical Foundations, Enabling Technologies, and Future Directions

    Full text link
    Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requirements of the sixth-generation (6G) communication systems is the concept of the holographic multiple-input multiple-output (HMIMO), which will actualize holographic radios with reasonable power consumption and fabrication cost. The HMIMO is facilitated by ultra-thin, extremely large, and nearly continuous surfaces that incorporate reconfigurable and sub-wavelength-spaced antennas and/or metamaterials. Such surfaces comprising dense electromagnetic (EM) excited elements are capable of recording and manipulating impinging fields with utmost flexibility and precision, as well as with reduced cost and power consumption, thereby shaping arbitrary-intended EM waves with high energy efficiency. The powerful EM processing capability of HMIMO opens up the possibility of wireless communications of holographic imaging level, paving the way for signal processing techniques realized in the EM-domain, possibly in conjunction with their digital-domain counterparts. However, in spite of the significant potential, the studies on HMIMO communications are still at an initial stage, its fundamental limits remain to be unveiled, and a certain number of critical technical challenges need to be addressed. In this survey, we present a comprehensive overview of the latest advances in the HMIMO communications paradigm, with a special focus on their physical aspects, their theoretical foundations, as well as the enabling technologies for HMIMO systems. We also compare the HMIMO with existing multi-antenna technologies, especially the massive MIMO, present various...Comment: double column, 58 page

    Beam Focusing for Near-Field Multiuser MIMO Communications

    Get PDF
    Large antenna arrays and high-frequency bands are two key features of future wireless communication systems. The combination of large-scale antennas with high transmission frequencies often results in the communicating devices operating in the near-field (Fresnel) region. In this paper, we study the potential of beam focusing, feasible in near-field operation, in facilitating high-rate multi-user downlink multiple-input multiple-output (MIMO) systems. As the ability to achieve beam focusing is dictated by the transmit antenna, we study near-field signalling considering different antenna structures, including fully-digital architectures, hybrid phase shifter-based precoders, and the emerging dynamic metasurface antenna (DMA) architecture for massive MIMO arrays. We first provide a mathematical model to characterize near-field wireless channels as well as the transmission pattern for the considered antenna architectures. Then, we formulate the beam focusing problem for the goal of maximizing the achievable sum-rate in multi-user networks. We propose efficient solutions based on the sum-rate maximization task for fully-digital, (phase shifters based-) hybrid and DMA architectures. Simulation results show the feasibility of the proposed beam focusing scheme for both single- and multi-user scenarios. In particular, the designed focused beams provide a new degree of freedom to mitigate interference in both angle and distance domains, which is not achievable using conventional far-field beam steering, allowing reliable communications for uses even residing at the same angular direction

    The Road to 6G: Ten Physical Layer Challenges for Communications Engineers

    Full text link
    While the deployment of 5G cellular systems will continue well in to the next decade, much interest is already being generated towards technologies that will underlie its successor, 6G. Undeniably, 5G will have transformative impact on the way we live and communicate, yet, it is still far away from supporting the Internet-of-Everything (IoE), where upwards of a million devices per km3\textrm{km}^3 (both terrestrial and aerial) will require ubiquitous, reliable, low-latency connectivity. This article looks at some of the fundamental problems that pertain to key physical layer enablers for 6G. This includes highlighting challenges related to intelligent reflecting surfaces, cell-free massive MIMO and THz communications. Our analysis covers theoretical modeling challenges, hardware implementation issues and scalability among others. The article concludes by delineating the critical role of signal processing in the new era for wireless communications.Comment: IEEE Communications Magazine, Accepte

    Dynamic Metasurface Antennas for Energy Efficient Massive MIMO Uplink Communications

    Full text link
    Future wireless communications are largely inclined to deploy a massive number of antennas at the base stations (BS) by exploiting energy-efficient and environmentally friendly technologies. An emerging technology called dynamic metasurface antennas (DMAs) is promising to realize such massive antenna arrays with reduced physical size, hardware cost, and power consumption. This paper aims to optimize the energy efficiency (EE) performance of DMAs-assisted massive MIMO uplink communications. We propose an algorithmic framework for designing the transmit precoding of each multi-antenna user and the DMAs tuning strategy at the BS to maximize the EE performance, considering the availability of the instantaneous and statistical channel state information (CSI), respectively. Specifically, the proposed framework includes Dinkelbach's transform, alternating optimization, and deterministic equivalent methods. In addition, we obtain a closed-form solution to the optimal transmit signal directions for the statistical CSI case, which simplifies the corresponding transmission design. The numerical results show good convergence performance of our proposed algorithms as well as considerable EE performance gains of the DMAs-assisted massive MIMO uplink communications over the baseline schemes

    Stacked Intelligent Metasurfaces for Multiuser Downlink Beamforming in the Wave Domain

    Full text link
    Intelligent metasurface has recently emerged as a promising technology that enables the customization of wireless environments by harnessing large numbers of inexpensive configurable scattering elements. However, prior studies have predominantly focused on single-layer metasurfaces, which have limitations in terms of the number of beam patterns they can steer accurately due to practical hardware restrictions. In contrast, this paper introduces a novel stacked intelligent metasurface (SIM) design. Specifically, we investigate the integration of SIM into the downlink of a multiuser multiple-input single-output (MISO) communication system, where a SIM, consisting of a multilayer metasurface structure, is deployed at the base station (BS) to facilitate transmit beamforming in the electromagnetic wave domain. This eliminates the need for conventional digital beamforming and high-resolution digital-to-analog converters at the BS. To this end, we formulate an optimization problem that aims to maximize the sum rate of all user equipments by jointly optimizing the transmit power allocation at the BS and the wave-based beamforming at the SIM, subject to both the transmit power budget and discrete phase shift constraints. Furthermore, we propose a computationally efficient algorithm for solving this joint optimization problem and elaborate on the potential benefits of employing SIM in wireless networks. Finally, the numerical results corroborate the effectiveness of the proposed SIM-enabled wave-based beamforming design and evaluate the performance improvement achieved by the proposed algorithm compared to various benchmark schemes. It is demonstrated that considering the same number of transmit antennas, the proposed SIM-based system achieves about 200\% improvement in terms of sum rate compared to conventional MISO systems.Comment: 32 pages, 6 figures, submitted to IEEE TW
    corecore