7,283 research outputs found

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    libcppa - Designing an Actor Semantic for C++11

    Full text link
    Parallel hardware makes concurrency mandatory for efficient program execution. However, writing concurrent software is both challenging and error-prone. C++11 provides standard facilities for multiprogramming, such as atomic operations with acquire/release semantics and RAII mutex locking, but these primitives remain too low-level. Using them both correctly and efficiently still requires expert knowledge and hand-crafting. The actor model replaces implicit communication by sharing with an explicit message passing mechanism. It applies to concurrency as well as distribution, and a lightweight actor model implementation that schedules all actors in a properly pre-dimensioned thread pool can outperform equivalent thread-based applications. However, the actor model did not enter the domain of native programming languages yet besides vendor-specific island solutions. With the open source library libcppa, we want to combine the ability to build reliable and distributed systems provided by the actor model with the performance and resource-efficiency of C++11.Comment: 10 page

    Revisiting Actor Programming in C++

    Full text link
    The actor model of computation has gained significant popularity over the last decade. Its high level of abstraction makes it appealing for concurrent applications in parallel and distributed systems. However, designing a real-world actor framework that subsumes full scalability, strong reliability, and high resource efficiency requires many conceptual and algorithmic additives to the original model. In this paper, we report on designing and building CAF, the "C++ Actor Framework". CAF targets at providing a concurrent and distributed native environment for scaling up to very large, high-performance applications, and equally well down to small constrained systems. We present the key specifications and design concepts---in particular a message-transparent architecture, type-safe message interfaces, and pattern matching facilities---that make native actors a viable approach for many robust, elastic, and highly distributed developments. We demonstrate the feasibility of CAF in three scenarios: first for elastic, upscaling environments, second for including heterogeneous hardware like GPGPUs, and third for distributed runtime systems. Extensive performance evaluations indicate ideal runtime behaviour for up to 64 cores at very low memory footprint, or in the presence of GPUs. In these tests, CAF continuously outperforms the competing actor environments Erlang, Charm++, SalsaLite, Scala, ActorFoundry, and even the OpenMPI.Comment: 33 page

    Efficient and Reasonable Object-Oriented Concurrency

    Full text link
    Making threaded programs safe and easy to reason about is one of the chief difficulties in modern programming. This work provides an efficient execution model for SCOOP, a concurrency approach that provides not only data race freedom but also pre/postcondition reasoning guarantees between threads. The extensions we propose influence both the underlying semantics to increase the amount of concurrent execution that is possible, exclude certain classes of deadlocks, and enable greater performance. These extensions are used as the basis an efficient runtime and optimization pass that improve performance 15x over a baseline implementation. This new implementation of SCOOP is also 2x faster than other well-known safe concurrent languages. The measurements are based on both coordination-intensive and data-manipulation-intensive benchmarks designed to offer a mixture of workloads.Comment: Proceedings of the 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE '15). ACM, 201

    Deploying active objects onto multicore

    Get PDF
    The performance of a program on multicore platform crucially depends on the scheduling of its tasks; existing high-level programming languages, however, offer limited control over scheduling. In this thesis, we develop Cacoj as an extensible tool set to transform Creol’s active concurrent objects into Java to be deployed on multicore through standard Java Runtime Environment. The concurrent object paradigm is a promising trend for multicore programming because each object may conceptually encapsulate a processor. Cacoj introduces a higher-level abstraction of concurrency API and a Creol compiler in which the translated object in Java takes control over the scheduling of the incoming messages through a per-object approach in contrast with current mainstream trend. Cacoj brings about the required grounds to extend Creol syntax to additionally specify different levels of priority and integrate them into the notion of active concurrent objects
    • …
    corecore