58,850 research outputs found

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper motivates and presents a program logic for reasoning about multithreaded Java-like programs with concurrency primitives such as dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits.\ud This paper presents the basic principles to reason about thread creation and thread joining. It finishes with an outlook how this logic will evolve into a full-fledged verification technique for Java (and possibly other multithreaded languages)

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper presents a program logic for reasoning about multithreaded Java-like programs with dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary variables keep track of multisets of currently held monitors. Data abstraction and behavioral subtyping are facilitated through abstract predicates, which are also used to represent monitor invariants, preconditions for thread starting and postconditions for thread joining. Value-parametrized types allow to conveniently capture common strong global invariants, like static object ownership relations. The program logic is presented for a model language with Java-like classes and interfaces, the soundness of the program logic is proven, and a number of illustrative examples are presented

    Dynamic Information Flow Analysis in Ruby

    Get PDF
    With the rapid increase in usage of the internet and online applications, there is a huge demand for applications to handle data privacy and integrity. Applications are already complex with business logic; adding the data safety logic would make them more complicated. The more complex the code becomes, the more possibilities it opens for security-critical bugs. To solve this conundrum, we can push this data safety handling feature to the language level rather than the application level. With a secure language, developers can write their application without having to worry about data security. This project introduces dynamic information flow analysis in Ruby. I extend the JRuby implementation, which is a widely used implementation of Ruby written in Java. Information flow analysis classifies variables used in the program into different security levels and monitors the data flow across levels. Ruby currently supports data integrity by a tainting mechanism. This project extends this tainting mechanism to handle implicit data flows, enabling it to protect confidentiality as well as integrity. Experimental results based on Ruby benchmarks are presented in this paper, which show that: This project protects confidentiality but at the cost of 1.2 - 10 times slowdown in execution time

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Block-Matching Optical Flow for Dynamic Vision Sensor- Algorithm and FPGA Implementation

    Full text link
    Rapid and low power computation of optical flow (OF) is potentially useful in robotics. The dynamic vision sensor (DVS) event camera produces quick and sparse output, and has high dynamic range, but conventional OF algorithms are frame-based and cannot be directly used with event-based cameras. Previous DVS OF methods do not work well with dense textured input and are designed for implementation in logic circuits. This paper proposes a new block-matching based DVS OF algorithm which is inspired by motion estimation methods used for MPEG video compression. The algorithm was implemented both in software and on FPGA. For each event, it computes the motion direction as one of 9 directions. The speed of the motion is set by the sample interval. Results show that the Average Angular Error can be improved by 30\% compared with previous methods. The OF can be calculated on FPGA with 50\,MHz clock in 0.2\,us per event (11 clock cycles), 20 times faster than a Java software implementation running on a desktop PC. Sample data is shown that the method works on scenes dominated by edges, sparse features, and dense texture.Comment: Published in ISCAS 201
    corecore