21,618 research outputs found

    Visual re-ranking with natural language understanding for text spotting

    Get PDF
    The final publication is available at link.springer.comMany scene text recognition approaches are based on purely visual information and ignore the semantic relation between scene and text. In this paper, we tackle this problem from natural language processing perspective to fill the gap between language and vision. We propose a post processing approach to improve scene text recognition accuracy by using occurrence probabilities of words (unigram language model), and the semantic correlation between scene and text. For this, we initially rely on an off-the-shelf deep neural network, already trained with large amount of data, which provides a series of text hypotheses per input image. These hypotheses are then re-ranked using word frequencies and semantic relatedness with objects or scenes in the image. As a result of this combination, the performance of the original network is boosted with almost no additional cost. We validate our approach on ICDAR'17 dataset.Peer ReviewedPostprint (author's final draft

    Visual Re-ranking with Natural Language Understanding for Text Spotting

    Get PDF
    Many scene text recognition approaches are based on purely visual information and ignore the semantic relation between scene and text. In this paper, we tackle this problem from natural language processing perspective to fill the gap between language and vision. We propose a post-processing approach to improve scene text recognition accuracy by using occurrence probabilities of words (unigram language model), and the semantic correlation between scene and text. For this, we initially rely on an off-the-shelf deep neural network, already trained with a large amount of data, which provides a series of text hypotheses per input image. These hypotheses are then re-ranked using word frequencies and semantic relatedness with objects or scenes in the image. As a result of this combination, the performance of the original network is boosted with almost no additional cost. We validate our approach on ICDAR'17 dataset.Comment: Accepted by ACCV 2018. arXiv admin note: substantial text overlap with arXiv:1810.0977

    Visual Semantic Re-ranker for Text Spotting

    Get PDF
    Many current state-of-the-art methods for text recognition are based on purely local information and ignore the semantic correlation between text and its surrounding visual context. In this paper, we propose a post-processing approach to improve the accuracy of text spotting by using the semantic relation between the text and the scene. We initially rely on an off-the-shelf deep neural network that provides a series of text hypotheses for each input image. These text hypotheses are then re-ranked using the semantic relatedness with the object in the image. As a result of this combination, the performance of the original network is boosted with a very low computational cost. The proposed framework can be used as a drop-in complement for any text-spotting algorithm that outputs a ranking of word hypotheses. We validate our approach on ICDAR'17 shared task dataset

    Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition

    Full text link
    Recognizing irregular text in natural scene images is challenging due to the large variance in text appearance, such as curvature, orientation and distortion. Most existing approaches rely heavily on sophisticated model designs and/or extra fine-grained annotations, which, to some extent, increase the difficulty in algorithm implementation and data collection. In this work, we propose an easy-to-implement strong baseline for irregular scene text recognition, using off-the-shelf neural network components and only word-level annotations. It is composed of a 3131-layer ResNet, an LSTM-based encoder-decoder framework and a 2-dimensional attention module. Despite its simplicity, the proposed method is robust and achieves state-of-the-art performance on both regular and irregular scene text recognition benchmarks. Code is available at: https://tinyurl.com/ShowAttendReadComment: Accepted to Proc. AAAI Conference on Artificial Intelligence 201
    corecore