1,721 research outputs found

    Adaptive RBFNN control of robot manipulators with finite-time convergence

    Get PDF

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Intelligent active force control of a three-link manipulator using fuzzy logic

    Get PDF
    The paper presents a novel approach to estimate the inertia matrix of a robot arm using a fuzzy logic (FL) mechanism in order to trigger the active force control (AFC) strategy. A comprehensive study is performed on a rigid three-link manipulator subjected to a number of external disturbances. The robustness and effectiveness of the proposed control scheme are investigated considering the trajectory track performance of the robotic arm taking into account the application of external disturbances and that the arm is commanded to describe a reference trajectory given a number of initial and operating conditions. The results show that the FL mechanism used in the study successfully computes appropriate estimated inertia matrix value to execute the control action. The proposed scheme exhibits a high degree of robustness and accuracy as the track error is bounded within an acceptable range of value even under the influence of the introduced disturbances

    Neural Adaptive Backstepping Control of a Robotic Manipulator With Prescribed Performance Constraint

    Full text link
    IEEE This paper presents an adaptive neural network (NN) control of a two-degree-of-freedom manipulator driven by an electrohydraulic actuator. To restrict the system output in a prescribed performance constraint, a weighted performance function is designed to guarantee the dynamic and steady tracking errors of joint angle in a required accuracy. Then, a radial-basis-function NN is constructed to train the unknown model dynamics of a manipulator by traditional backstepping control (TBC) and obtain the preliminary estimated model, which can replace the preknown dynamics in the backstepping iteration. Furthermore, an adaptive estimation law is adopted to self-tune every trained-node weight, and the estimated model is online optimized to enhance the robustness of the NN controller. The effectiveness of the proposed control is verified by comparative simulation and experimental results with Proportional-integral-derivative and TBC methods

    Adaptive Control Based On Neural Network

    Get PDF
    corecore